Do you want to publish a course? Click here

Quantum boomerang effect: beyond the standard Anderson model

306   0   0.0 ( 0 )
 Added by Patrizia Vignolo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It was recently shown that wavepackets with skewed momentum distribution exhibit a boomerang-like dynamics in the Anderson model due to Anderson localization: after an initial ballistic motion, they make a U-turn and eventually come back to their starting point. In this paper, we study the robustness of the quantum boomerang effect in various kinds of disordered and dynamical systems: tight-binding models with pseudo-random potentials, systems with band random Hamiltonians, and the kicked rotor. Our results show that the boomerang effect persists in models with pseudo-random potentials. It is also present in the kicked rotor, although in this case with a specific dependency on the initial state. On the other hand, we find that random hopping processes inhibit any drift motion of the wavepacket, and consequently the boomerang effect. In particular, if the random nearest-neighbor hopping amplitudes have zero average, the wavepacket remains in its initial position.



rate research

Read More

145 - Giovanni Modugno 2010
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials have opened a new window for studying fundamental phenomena related to disorder. In particular, we point our attention to recent experimental studies on Anderson localization and on the interplay of disorder and weak interactions. These realize a very promising starting point for a deeper understanding of the complex behaviour of interacting, disordered systems.
We evaluate the localization length of the wave (or Schroedinger) equation in the presence of a disordered speckle potential. This is relevant for experiments on cold atoms in optical speckle potentials. We focus on the limit of large disorder, where the Born approximation breaks down and derive an expression valid in the quasi-metallic phase at large disorder. This phase becomes strongly localized and the effective mobility edge disappears.
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to the multifractal dimension $d_2$. Our analysis is based on an experimentally realizable setup, the quantum kicked rotor with quasi-periodic temporal driving, an effectively 3-dimensional disordered system recently exploited to explore the physics of the Anderson transition with cold atoms.
Using a three-frequency one-dimensional kicked rotor experimentally realized with a cold atomic gas, we study the transport properties at the critical point of the metal-insulator Anderson transition. We accurately measure the time-evolution of an initially localized wavepacket and show that it displays at the critical point a scaling invariance characteristic of this second-order phase transition. The shape of the momentum distribution at the critical point is found to be in excellent agreement with the analytical form deduced from self-consistent theory of localization.
Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a heat bath is an open question that is actively investigated theoretically and experimentally. In this work we consider the stability of an Anderson insulator with a finite density of particles interacting with a single mobile impurity -- a small quantum bath. We give perturbative arguments that support the stability of localization in the strong interaction regime. Large scale tensor network simulations of dynamics are employed to corroborate the presence of the localized phase and give quantitative predictions in the thermodynamic limit. We develop a phenomenological description of the dynamics in the strong interaction regime, and demonstrate that the impurity effectively turns the Anderson insulator into an MBL phase, giving rise to non-trivial entanglement dynamics well captured by our phenomenology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا