We calculate the mass spectrum and the structure of the positronium system at a strong coupling in a basis light-front approach. We start from the light-front QED Hamiltonian and retain one dynamical photon in our basis. We perform the fermion mass renormalization associated with the nonperturbative fermion self-energy correction. We present the resulting mass spectrum and wave functions for the selected low-lying states. Next, we apply this approach to QCD and calculate the heavy meson system with one dynamical gluon retained. We illustrate the obtained mass spectrum and wave functions for the selected low-lying states.
We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 0.6%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.
Basis Light-front Quantization (BLFQ) has recently been developed as a promising nonperturbative technique. Using BLFQ, we investigate the Generalized Parton Distributions (GPDs) in a nonperturbative framework for a dressed electron in QED. We evaluate light-front wave functions and carry out overlap calculations to obtain GPDs. We also perform perturbative calculations in the corresponding basis spaces to demonstrate that they compare reasonably with the BLFQ results.
We present a general framework to calculate the properties of relativistic compound systems from the knowledge of an elementary Hamiltonian. Our framework provides a well-controlled nonperturbative calculational scheme which can be systematically improved. The state vector of a physical system is calculated in light-front dynamics. From the general properties of this form of dynamics, the state vector can be further decomposed in well-defined Fock components. In order to control the convergence of this expansion, we advocate the use of the covariant formulation of light-front dynamics. In this formulation, the state vector is projected on an arbitrary light-front plane $omega cd x=0$ defined by a light-like four-vector $omega$. This enables us to control any violation of rotational invariance due to the truncation of the Fock expansion. We then present a general nonperturbative renormalization scheme in order to avoid field-theoretical divergences which may remain uncancelled due to this truncation. This general framework has been applied to a large variety of models. As a starting point, we consider QED for the two-body Fock space truncation and calculate the anomalous magnetic moment of the electron. We show that it coincides, in this approximation, with the well-known Schwinger term. Then we investigate the properties of a purely scalar system in the three-body approximation, where we highlight the role of antiparticle degrees of freedom. As a non-trivial example of our framework, we calculate the structure of a physical fermion in the Yukawa model, for the three-body Fock space truncation (but still without antifermion contributions). We finally show why our approach is also well-suited to describe effective field theories like chiral perturbation theory in the baryonic sector.
We obtain the light-front wavefunctions for the nucleon in the valence quark Fock space from an effective Hamiltonian, which includes the transverse and longitudinal confinement and the one-gluon exchange interaction with fixed coupling. The wavefunctions are generated by solving the eigenvalue equation in a basis light-front quantization. Fitting the model parameters, the wavefunctions lead to good simultaneous description of electromagnetic form factors, radii, and parton distribution functions for the proton.
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these scales as the only free parameters, the valence quark distribution functions of the pion, after QCD evolving, are consistent with the E615 experiment at Fermilab. In addition, the ratio of the up quark distribution in the kaon to that in the pion also agrees with the NA3 experimental result at CERN.
Xingbo Zhao
,Kaiyu Fu
,Hengfei Zhao
.
(2021)
.
"Positronium: an illustration of nonperturbative renormalization in a basis light-front approach"
.
Xingbo Zhao
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا