This work develops a quantitative homogenization theory for random suspensions of rigid particles in a steady Stokes flow, and completes recent qualitative results. More precisely, we establish a large-scale regularity theory for this Stokes problem, and we prove moment bounds for the associated correctors and optimal estimates on the homogenization error; the latter further requires a quantitative ergodicity assumption on the random suspension. Compared to the corresponding quantitative homogenization theory for divergence-form linear elliptic equations, substantial difficulties arise from the analysis of the fluid incompressibility and the particle rigidity constraints. Our analysis further applies to the problem of stiff inclusions in (compressible or incompressible) linear elasticity and in electrostatics; it is also new in those cases, even in the periodic setting.