Do you want to publish a course? Click here

hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices

213   0   0.0 ( 0 )
 Added by Javier Duarte
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.



rate research

Read More

We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.
Motivation: Novel machine learning and statistical modeling studies rely on standardized comparisons to existing methods using well-studied benchmark datasets. Few tools exist that provide rapid access to many of these datasets through a standardized, user-friendly interface that integrates well with popular data science workflows. Results: This release of PMLB provides the largest collection of diverse, public benchmark datasets for evaluating new machine learning and data science methods aggregated in one location. v1.0 introduces a number of critical improvements developed following discussions with the open-source community. Availability: PMLB is available at https://github.com/EpistasisLab/pmlb. Python and R interfaces for PMLB can be installed through the Python Package Index and Comprehensive R Archive Network, respectively.
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at $3^{text{rd}}$ and $4^{text{th}}$ generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.
Recent works propose neural network- (NN-) inspired analog-to-digital converters (NNADCs) and demonstrate their great potentials in many emerging applications. These NNADCs often rely on resistive random-access memory (RRAM) devices to realize the NN operations and require high-precision RRAM cells (6~12-bit) to achieve a moderate quantization resolution (4~8-bit). Such optimistic assumption of RRAM resolution, however, is not supported by fabrication data of RRAM arrays in large-scale production process. In this paper, we propose an NN-inspired super-resolution ADC based on low-precision RRAM devices by taking the advantage of a co-design methodology that combines a pipelined hardware architecture with a custom NN training framework. Results obtained from SPICE simulations demonstrate that our method leads to robust design of a 14-bit super-resolution ADC using 3-bit RRAM devices with improved power and speed performance and competitive figure-of-merits (FoMs). In addition to the linear uniform quantization, the proposed ADC can also support configurable high-resolution nonlinear quantization with high conversion speed and low conversion energy, enabling future intelligent analog-to-information interfaces for near-sensor analytics and processing.
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning (OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا