Do you want to publish a course? Click here

Packet-Level Adversarial Network Traffic Crafting using Sequence Generative Adversarial Networks

77   0   0.0 ( 0 )
 Added by Qiumei Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The surge in the internet of things (IoT) devices seriously threatens the current IoT security landscape, which requires a robust network intrusion detection system (NIDS). Despite superior detection accuracy, existing machine learning or deep learning based NIDS are vulnerable to adversarial examples. Recently, generative adversarial networks (GANs) have become a prevailing method in adversarial examples crafting. However, the nature of discrete network traffic at the packet level makes it hard for GAN to craft adversarial traffic as GAN is efficient in generating continuous data like image synthesis. Unlike previous methods that convert discrete network traffic into a grayscale image, this paper gains inspiration from SeqGAN in sequence generation with policy gradient. Based on the structure of SeqGAN, we propose Attack-GAN to generate adversarial network traffic at packet level that complies with domain constraints. Specifically, the adversarial packet generation is formulated into a sequential decision making process. In this case, each byte in a packet is regarded as a token in a sequence. The objective of the generator is to select a token to maximize its expected end reward. To bypass the detection of NIDS, the generated network traffic and benign traffic are classified by a black-box NIDS. The prediction results returned by the NIDS are fed into the discriminator to guide the update of the generator. We generate malicious adversarial traffic based on a real public available dataset with attack functionality unchanged. The experimental results validate that the generated adversarial samples are able to deceive many existing black-box NIDS.



rate research

Read More

83 - Chenxin Xu , Rong Xia , Yong Xiao 2021
With the fast growing demand on new services and applications as well as the increasing awareness of data protection, traditional centralized traffic classification approaches are facing unprecedented challenges. This paper introduces a novel framework, Federated Generative Adversarial Networks and Automatic Classification (FGAN-AC), which integrates decentralized data synthesizing with traffic classification. FGAN-AC is able to synthesize and classify multiple types of service data traffic from decentralized local datasets without requiring a large volume of manually labeled dataset or causing any data leakage. Two types of data synthesizing approaches have been proposed and compared: computation-efficient FGAN (FGAN-uppercaseexpandafter{romannumeral1}) and communication-efficient FGAN (FGAN-uppercaseexpandafter{romannumeral2}). The former only implements a single CNN model for processing each local dataset and the later only requires coordination of intermediate model training parameters. An automatic data classification and model updating framework has been proposed to automatically identify unknown traffic from the synthesized data samples and create new pseudo-labels for model training. Numerical results show that our proposed framework has the ability to synthesize highly mixed service data traffic and can significantly improve the traffic classification performance compared to existing solutions.
Sequences play an important role in many engineering applications and systems. Searching sequences with desired properties has long been an interesting but also challenging research topic. This article proposes a novel method, called HpGAN, to search desired sequences algorithmically using generative adversarial networks (GAN). HpGAN is based on the idea of zero-sum game to train a generative model, which can generate sequences with characteristics similar to the training sequences. In HpGAN, we design the Hopfield network as an encoder to avoid the limitations of GAN in generating discrete data. Compared with traditional sequence construction by algebraic tools, HpGAN is particularly suitable for intractable problems with complex objectives which prevent mathematical analysis. We demonstrate the search capabilities of HpGAN in two applications: 1) HpGAN successfully found many different mutually orthogonal complementary code sets (MOCCS) and optimal odd-length Z-complementary pairs (OB-ZCPs) which are not part of the training set. In the literature, both MOCSSs and OB-ZCPs have found wide applications in wireless communications. 2) HpGAN found new sequences which achieve four-times increase of signal-to-interference ratio--benchmarked against the well-known Legendre sequence--of a mismatched filter (MMF) estimator in pulse compression radar systems. These sequences outperform those found by AlphaSeq.
122 - Pan Wang , Zixuan Wang , Feng Ye 2021
With the rapid development of Green Communication Network, the types and quantity of network traffic data are accordingly increasing. Network traffic classification become a non-trivial research task in the area of network management and security, which not only help to improve the fine-grained network resource allocation, but also enable policy-driven network management. Meanwhile, the combination of SDN and Edge Computing can leverage both SDN at its global visiability of network-wide and Edge Computing at its low latency and good privacy-preserving. However, capturing large labeled datasets is a cumbersome and time-consuming manual labor. Semi-Supervised learning is an appropriate technique to overcome this problem. With that in mind, we proposed a Generative Adversarial Network (GAN)-based Semi-Supervised Learning Encrypted Traffic Classification method called emph{ByteSGAN} embedded in SDN Edge Gateway to achieve the goal of traffic classification in a fine-grained manner to further improve network resource utilization. ByteSGAN can only use a small number of labeled traffic samples and a large number of unlabeled samples to achieve a good performance of traffic classification by modifying the structure and loss function of the regular GAN discriminator network in a semi-supervised learning way. Based on public dataset ISCX2012 VPN-nonVPN, two experimental results show that the ByteSGAN can efficiently improve the performance of traffic classifier and outperform the other supervised learning method like CNN.
Previous studies have demonstrated that commonly studied (vanilla) touch-based continuous authentication systems (V-TCAS) are susceptible to population attack. This paper proposes a novel Generative Adversarial Network assisted TCAS (G-TCAS) framework, which showed more resilience to the population attack. G-TCAS framework was tested on a dataset of 117 users who interacted with a smartphone and tablet pair. On average, the increase in the false accept rates (FARs) for V-TCAS was much higher (22%) than G-TCAS (13%) for the smartphone. Likewise, the increase in the FARs for V-TCAS was 25% compared to G-TCAS (6%) for the tablet.
60 - Jia Liu , Yan Ke , Yu Lei 2019
In the past few years, the Generative Adversarial Network (GAN) which proposed in 2014 has achieved great success. GAN has achieved many research results in the field of computer vision and natural language processing. Image steganography is dedicated to hiding secret messages in digital images, and has achieved the purpose of covert communication. Recently, research on image steganography has demonstrated great potential for using GAN and neural networks. In this paper we review different strategies for steganography such as cover modification, cover selection and cover synthesis by GANs, and discuss the characteristics of these methods as well as evaluation metrics and provide some possible future research directions in image steganography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا