No Arabic abstract
Positive-unlabeled learning refers to the process of training a binary classifier using only positive and unlabeled data. Although unlabeled data can contain positive data, all unlabeled data are regarded as negative data in existing positive-unlabeled learning methods, which resulting in diminishing performance. We provide a new perspective on this problem -- considering unlabeled data as noisy-labeled data, and introducing a new formulation of PU learning as a problem of joint optimization of noisy-labeled data. This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.
Learning with noisy labels has attracted a lot of attention in recent years, where the mainstream approaches are in pointwise manners. Meanwhile, pairwise manners have shown great potential in supervised metric learning and unsupervised contrastive learning. Thus, a natural question is raised: does learning in a pairwise manner mitigate label noise? To give an affirmative answer, in this paper, we propose a framework called Class2Simi: it transforms data points with noisy class labels to data pairs with noisy similarity labels, where a similarity label denotes whether a pair shares the class label or not. Through this transformation, the reduction of the noise rate is theoretically guaranteed, and hence it is in principle easier to handle noisy similarity labels. Amazingly, DNNs that predict the clean class labels can be trained from noisy data pairs if they are first pretrained from noisy data points. Class2Simi is computationally efficient because not only this transformation is on-the-fly in mini-batches, but also it just changes loss computation on top of model prediction into a pairwise manner. Its effectiveness is verified by extensive experiments.
Semi-supervised node classification, as a fundamental problem in graph learning, leverages unlabeled nodes along with a small portion of labeled nodes for training. Existing methods rely heavily on high-quality labels, which, however, are expensive to obtain in real-world applications since certain noises are inevitably involved during the labeling process. It hence poses an unavoidable challenge for the learning algorithm to generalize well. In this paper, we propose a novel robust learning objective dubbed pairwise interactions (PI) for the model, such as Graph Neural Network (GNN) to combat noisy labels. Unlike classic robust training approaches that operate on the pointwise interactions between node and class label pairs, PI explicitly forces the embeddings for node pairs that hold a positive PI label to be close to each other, which can be applied to both labeled and unlabeled nodes. We design several instantiations for PI labels based on the graph structure and the node class labels, and further propose a new uncertainty-aware training technique to mitigate the negative effect of the sub-optimal PI labels. Extensive experiments on different datasets and GNN architectures demonstrate the effectiveness of PI, yielding a promising improvement over the state-of-the-art methods.
Learning with noisy labels is an important and challenging task for training accurate deep neural networks. Some commonly-used loss functions, such as Cross Entropy (CE), suffer from severe overfitting to noisy labels. Robust loss functions that satisfy the symmetric condition were tailored to remedy this problem, which however encounter the underfitting effect. In this paper, we theoretically prove that textbf{any loss can be made robust to noisy labels} by restricting the network output to the set of permutations over a fixed vector. When the fixed vector is one-hot, we only need to constrain the output to be one-hot, which however produces zero gradients almost everywhere and thus makes gradient-based optimization difficult. In this work, we introduce the sparse regularization strategy to approximate the one-hot constraint, which is composed of network output sharpening operation that enforces the output distribution of a network to be sharp and the $ell_p$-norm ($ple 1$) regularization that promotes the network output to be sparse. This simple approach guarantees the robustness of arbitrary loss functions while not hindering the fitting ability. Experimental results demonstrate that our method can significantly improve the performance of commonly-used loss functions in the presence of noisy labels and class imbalance, and outperform the state-of-the-art methods. The code is available at https://github.com/hitcszx/lnl_sr.
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics. However, a major challenge in training agents from learned reward models is that the agent can learn to exploit errors in the reward model to achieve high reward behaviors that do not correspond to the intended task. These reward delusions can lead to unintended and even dangerous behaviors. On the other hand, adversarial imitation learning frameworks tend to suffer the opposite problem, where the discriminator learns to trivially distinguish agent and expert behavior, resulting in reward models that produce low reward signal regardless of the input state. In this paper, we connect these two classes of reward learning methods to positive-unlabeled (PU) learning, and we show that by applying a large-scale PU learning algorithm to the reward learning problem, we can address both the reward under- and over-estimation problems simultaneously. Our approach drastically improves both GAIL and supervised reward learning, without any additional assumptions.
A deep neural network trained on noisy labels is known to quickly lose its power to discriminate clean instances from noisy ones. After the early learning phase has ended, the network memorizes the noisy instances, which leads to a significant degradation in its generalization performance. To resolve this issue, we propose MARVEL (MARgins Via Early Learning), a new robust learning method where the memorization of the noisy instances is curbed. We propose a new test statistic that tracks the goodness of fit of every instance based on the epoch-history of its classification margins. If its classification margin is small in a sequence of consecutive learning epochs, that instance is declared noisy and the network abandons learning on it. Consequently, the network first flags a possibly noisy instance, and then waits to see if learning on that instance can be improved and if not, the network learns with confidence that this instance can be safely abandoned. We also propose MARVEL+, where arduous instances can be upweighted, enabling the network to focus and improve its learning on them and consequently its generalization. Experimental results on benchmark datasets with synthetic label noise and real-world datasets show that MARVEL outperforms other baselines consistently across different noise levels, with a significantly larger margin under asymmetric noise.