Do you want to publish a course? Click here

Online Directed Spanners and Steiner Forests

199   0   0.0 ( 0 )
 Added by Young-San Lin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present online algorithms for directed spanners and Steiner forests. These problems fall under the unifying framework of online covering linear programming formulations, developed by Buchbinder and Naor (MOR, 34, 2009), based on primal-dual techniques. Our results include the following: For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized $tilde{O}(n^{4/5})$-competitive algorithm for graphs with general lengths, where $n$ is the number of vertices. With uniform lengths, we give an efficient randomized $tilde{O}(n^{2/3+epsilon})$-competitive algorithm, and an efficient deterministic $tilde{O}(k^{1/2+epsilon})$-competitive algorithm, where $k$ is the number of terminal pairs. These are the first online algorithms for directed spanners. In the offline setting, the current best approximation ratio with uniform lengths is $tilde{O}(n^{3/5 + epsilon})$, due to Chlamtac, Dinitz, Kortsarz, and Laekhanukit (TALG 2020). For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized $tilde{O}(n^{2/3 + epsilon})$-competitive algorithm. The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is $tilde{O}(k^{1/2 + epsilon})$-competitive. In the offline version, the current best approximation ratio with uniform costs is $tilde{O}(n^{26/45 + epsilon})$, due to Abboud and Bodwin (SODA 2018). A small modification of the online covering framework by Buchbinder and Naor implies a polynomial-time primal-dual approach with separation oracles, which a priori might perform exponentially many calls. We convert the online spanner problem and the online Steiner forest problem into online covering problems and round in a problem-specific fashion.



rate research

Read More

It was recently found that there are very close connections between the existence of additive spanners (subgraphs where all distances are preserved up to an additive stretch), distance preservers (subgraphs in which demand pairs have their distance preserved exactly), and pairwise spanners (subgraphs in which demand pairs have their distance preserved up to a multiplicative or additive stretch) [Abboud-Godwin SODA 16, Godwin-Williams SODA 16]. We study these problems from an optimization point of view, where rather than studying the existence of extremal instances we are given an instance and are asked to find the sparsest possible spanner/preserver. We give an $O(n^{3/5 + epsilon})$-approximation for distance preservers and pairwise spanners (for arbitrary constant $epsilon > 0$). This is the first nontrivial upper bound for either problem, both of which are known to be as hard to approximate as Label Cover. We also prove Label Cover hardness for approximating additive spanners, even for the cases of additive 1 stretch (where one might expect a polylogarithmic approximation, since the related multiplicative 2-spanner problem admits an $O(log n)$-approximation) and additive polylogarithmic stretch (where the related multiplicative spanner problem has an $O(1)$-approximation). Interestingly, the techniques we use in our approximation algorithm extend beyond distance-based problem to pure connectivity network design problems. In particular, our techniques allow us to give an $O(n^{3/5 + epsilon})$-approximation for the Directed Steiner Forest problem (for arbitrary constant $epsilon > 0$) when all edges have uniform costs, improving the previous best $O(n^{2/3 + epsilon})$-approximation due to Berman et al.~[ICALP 11] (which holds for general edge costs).
Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in $mathbb{R}^d$. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on $varepsilon>0$ and $din mathbb{N}$ of the minimum lightness of $(1+varepsilon)$-spanners, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner $(1+varepsilon)$-spanners of lightness $O(varepsilon^{-1}logDelta)$ in the plane, where $Deltageq Omega(sqrt{n})$ is the emph{spread} of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness $tilde{O}(varepsilon^{-(d+1)/2})$ in dimensions $dgeq 3$. Recently, Bhore and T{o}th (2020) established a lower bound of $Omega(varepsilon^{-d/2})$ for the lightness of Steiner $(1+varepsilon)$-spanners in $mathbb{R}^d$, for $dge 2$. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions $dgeq 2$. In this work, we show that for every finite set of points in the plane and every $varepsilon>0$, there exists a Euclidean Steiner $(1+varepsilon)$-spanner of lightness $O(varepsilon^{-1})$; this matches the lower bound for $d=2$. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.
169 - Ruoxu Cen , Ran Duan , Yong Gu 2019
A roundtrip spanner of a directed graph $G$ is a subgraph of $G$ preserving roundtrip distances approximately for all pairs of vertices. Despite extensive research, there is still a small stretch gap between roundtrip spanners in directed graphs and undirected graphs. For a directed graph with real edge weights in $[1,W]$, we first propose a new deterministic algorithm that constructs a roundtrip spanner with $(2k-1)$ stretch and $O(k n^{1+1/k}log (nW))$ edges for every integer $k> 1$, then remove the dependence of size on $W$ to give a roundtrip spanner with $(2k-1)$ stretch and $O(k n^{1+1/k}log n)$ edges. While keeping the edge size small, our result improves the previous $2k+epsilon$ stretch roundtrip spanners in directed graphs [Roditty, Thorup, Zwick02; Zhu, Lam18], and almost matches the undirected $(2k-1)$-spanner with $O(n^{1+1/k})$ edges [Althofer et al. 93] when $k$ is a constant, which is optimal under Erdos conjecture.
Recent work has established that, for every positive integer $k$, every $n$-node graph has a $(2k-1)$-spanner on $O(f^{1-1/k} n^{1+1/k})$ edges that is resilient to $f$ edge or vertex faults. For vertex faults, this bound is tight. However, the case of edge faults is not as well understood: the best known lower bound for general $k$ is $Omega(f^{frac12 - frac{1}{2k}} n^{1+1/k} +fn)$. Our main result is to nearly close this gap with an improved upper bound, thus separating the cases of edge and vertex faults. For odd $k$, our new upper bound is $O_k(f^{frac12 - frac{1}{2k}} n^{1+1/k} + fn)$, which is tight up to hidden $poly(k)$ factors. For even $k$, our new upper bound is $O_k(f^{1/2} n^{1+1/k} +fn)$, which leaves a gap of $poly(k) f^{1/(2k)}$. Our proof is an analysis of the fault-tolerant greedy algorithm, which requires exponential time, but we also show that there is a polynomial-time algorithm which creates edge fault tolerant spanners that are larger only by factors of $k$.
The girth of a graph, i.e. the length of its shortest cycle, is a fundamental graph parameter. Unfortunately all known algorithms for computing, even approximately, the girth and girth-related structures in directed weighted $m$-edge and $n$-node graphs require $Omega(min{n^{omega}, mn})$ time (for $2leqomega<2.373$). In this paper, we drastically improve these runtimes as follows: * Multiplicative Approximations in Nearly Linear Time: We give an algorithm that in $widetilde{O}(m)$ time computes an $widetilde{O}(1)$-multiplicative approximation of the girth as well as an $widetilde{O}(1)$-multiplicative roundtrip spanner with $widetilde{O}(n)$ edges with high probability (w.h.p). * Nearly Tight Additive Approximations: For unweighted graphs and any $alpha in (0,1)$ we give an algorithm that in $widetilde{O}(mn^{1 - alpha})$ time computes an $O(n^alpha)$-additive approximation of the girth w.h.p, and partially derandomize it. We show that the runtime of our algorithm cannot be significantly improved without a breakthrough in combinatorial Boolean matrix multiplication. Our main technical contribution to achieve these results is the first nearly linear time algorithm for computing roundtrip covers, a directed graph decomposition concept key to previous roundtrip spanner constructions. Previously it was not known how to compute these significantly faster than $Omega(min{n^omega, mn})$ time. Given the traditional difficulty in efficiently processing directed graphs, we hope our techniques may find further applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا