Low-temperature entropy in JT gravity


Abstract in English

For ensembles of Hamiltonians that fall under the Dyson classification of random matrices with $beta in {1,2,4}$, the low-temperature mean entropy can be shown to vanish as $langle S(T)ranglesim kappa T^{beta+1}$. A similar relation holds for Altland-Zirnbauer ensembles. JT gravity has been shown to be dual to the double-scaling limit of a $beta =2$ ensemble, with a classical eigenvalue density $propto e^{S_0}sqrt{E}$ when $0 < E ll 1$. We use universal results about the distribution of the smallest eigenvalues in such ensembles to calculate $kappa$ up to corrections that we argue are doubly exponentially small in $S_0$.

Download