Do you want to publish a course? Click here

Quantum (dis)charge of black hole interiors

69   0   0.0 ( 0 )
 Added by Christiane Klein
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the vacuum polarization induced by a quantum charged scalar field near the inner horizon of a charged (Reissner-Nordstrom-de Sitter) black hole in quantum states that start out as regular states near an initial Cauchy surface. Contrary to the outer (i.e. event-) horizon, where polarization effects lead to a discharge, we find that near an inner horizon, the transversal component of the expected current density can have either sign depending on the black hole and field parameters. Thus, the inner horizon can be charged or discharged. But we find that it is always discharged close to extremality thus driving the black hole interior away from this critical point. Furthermore, we find that quantum effects dominate in that the strength of the blow up of the quantum current at the inner horizon is state-independent and stronger than that of the current of a classical solution.



rate research

Read More

446 - A. Peltola , G. Kunstatter 2009
We consider two different effective polymerization schemes applied to D-dimensional, spherically symmetric black hole interiors. It is shown that polymerization of the generalized area variable alone leads to a complete, regular, single-horizon spacetime in which the classical singularity is replaced by a bounce. The bounce radius is independent of rescalings of the homogeneous internal coordinate, but does depend on the arbitrary fiducial cell size. The model is therefore necessarily incomplete. It nonetheless has many interesting features: After the bounce, the interior region asymptotes to an infinitely expanding Kantowski-Sachs spacetime. If the solution is analytically continued across the horizon, the black hole exterior exhibits asymptotically vanishing quantum-corrections due to the polymerization. In all spacetime dimensions except four, the fall-off is too slow to guarantee invariance under Poincare transformations in the exterior asymptotic region. Hence the four-dimensional solution stands out as the only example which satisfies the criteria for asymptotic flatness. In this case it is possible to calculate the quantum-corrected temperature and entropy. We also show that polymerization of both phase space variables, the area and the conformal mode of the metric, generically leads to a multiple horizon solution which is reminiscent of polymerized mini-superspace models of spherically symmetric black holes in Loop Quantum Gravity.
We compute the scattering cross section of Reissner-Nordstrom black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.
We present a thorough observational investigation of the heuristic quantised ringdown model presented in Foit & Kleban (2019). This model is based on the Bekenstein-Mukhanov conjecture, stating that the area of a black hole horizon is an integer multiple of the Planck area $l_P^2$ multiplied by a phenomenological constant, $alpha$, which can be viewed as an additional black hole intrinsic parameter. Our approach is based on a time-domain analysis of the gravitational wave signals produced by the ringdown phase of binary black hole mergers detected by the LIGO and Virgo collaboration. Employing a full Bayesian formalism and taking into account the complete correlation structure among the black hole parameters, we show that the value of $alpha$ cannot be constrained using only GW150914, in contrast to what was suggested in Foit & Kleban (2019). We proceed to repeat the same analysis on the new gravitational wave events detected by the LIGO and Virgo Collaboration up to 1 October 2019, obtaining a combined-event measure equal to $alpha = 15.6^{+20.5}_{-13.3}$ and a combined log odds ratio of $0.1 pm 0.6$, implying that current data are not informative enough to favour or discard this model against general relativity. We then show that using a population of $mathcal{O}(20)$ GW150914-like simulated events - detected by the current infrastructure of ground-based detectors at their design sensitivity - it is possible to confidently falsify the quantised model or prove its validity, in which case probing $alpha$ at the few % level. Finally we classify the stealth biases that may show up in a population study.
To model the interior of a black hole, a study is made of a spin system with long-range random four-spin couplings that exhibits quantum chaos. The black hole limit corresponds to a system where the microstates are approximately degenerate and equally likely, corresponding to the high temperature limit of the spin system. At the leading level of approximation, reconstruction of bulk physics implies that local probes of the black hole should exhibit free propagation and unitary local evolution. We test the conjecture that a particular mean field Hamiltonian provides such a local bulk Hamiltonian by numerically solving the exact Schrodinger equation and comparing the time evolution to the approximate mean field time values. We find excellent agreement between the two time evolutions for timescales smaller than the scrambling time. In earlier work, it was shown bulk evolution along comparable timeslices is spoiled by the presence of the curvature singularity, thus the matching found in the present work provides evidence of the success of this approach to interior holography. The numerical solutions also provide a useful testing ground for various measures of quantum chaos and global scrambling. A number of different observables, such as entanglement entropy, out-of-time-order correlators, and trace distance are used to study these effects. This leads to a suitable definition of scrambling time, and evidence is presented showing a logarithmic variation with the system size.
106 - Qing-Quan Jiang 2012
In recent work [emph{Quantum tunneling and black hole spectroscopy, Phys. Lett.} B686 (2010) 279, arXiv:0907.4271, by Banerjee et al.], it has been shown, in the tunneling mechanism, the area spacing parameter of a black hole horizon is given by $gamma=4$. In this paper, by carefully analyzing the tunneling process of the black hole radiation, we interestingly find that the most qualified candidate for a universal area gap in the tunneling mechanism is $gamma=8pi$. First, we develop the Banerjees treatment and the Kunstatters conjecture to revisit the black hole spectroscopy via quantum tunneling, and find for a real tunneling process, the area spacing parameter is given by the possible value $gammageq 4$. That is, the previous model-dependent area spacing parameters, i.e. $gamma=8pi, 4ln 3, 4$, are all possible in the tunneling mechanism. Finally, some discussions are followed to find, in the tunneling mechanism, $gamma=8pi$ is the most qualified candidate for a universal area spacing parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا