No Arabic abstract
In this paper, we present an open-source software for developing a nonparallel voice conversion (VC) system named crank. Although we have released an open-source VC software based on the Gaussian mixture model named sprocket in the last VC Challenge, it is not straightforward to apply any speech corpus because it is necessary to prepare parallel utterances of source and target speakers to model a statistical conversion function. To address this issue, in this study, we developed a new open-source VC software that enables users to model the conversion function by using only a nonparallel speech corpus. For implementing the VC software, we used a vector-quantized variational autoencoder (VQVAE). To rapidly examine the effectiveness of recent technologies developed in this research field, crank also supports several representative works for autoencoder-based VC methods such as the use of hierarchical architectures, cyclic architectures, generative adversarial networks, speaker adversarial training, and neural vocoders. Moreover, it is possible to automatically estimate objective measures such as mel-cepstrum distortion and pseudo mean opinion score based on MOSNet. In this paper, we describe representative functions developed in crank and make brief comparisons by objective evaluations.
This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet vocoders are trained with natural acoustic features but conditioned on the converted features in the conversion stage for VC, and such a mismatch often causes significant quality and similarity degradation. In this work, we take advantage of the particular structure of VAEs to refine WaveNet vocoders with the self-reconstructed features generated by VAE, which are of similar characteristics with the converted features while having the same temporal structure with the target natural features. We analyze these features and show that the self-reconstructed features are similar to the converted features. Objective and subjective experimental results demonstrate the effectiveness of our proposed framework.
In this work, we investigate the effectiveness of two techniques for improving variational autoencoder (VAE) based voice conversion (VC). First, we reconsider the relationship between vocoder features extracted using the high quality vocoders adopted in conventional VC systems, and hypothesize that the spectral features are in fact F0 dependent. Such hypothesis implies that during the conversion phase, the latent codes and the converted features in VAE based VC are in fact source F0 dependent. To this end, we propose to utilize the F0 as an additional input of the decoder. The model can learn to disentangle the latent code from the F0 and thus generates converted F0 dependent converted features. Second, to better capture temporal dependencies of the spectral features and the F0 pattern, we replace the frame wise conversion structure in the original VAE based VC framework with a fully convolutional network structure. Our experiments demonstrate that the degree of disentanglement as well as the naturalness of the converted speech are indeed improved.
Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consistent adversarial network (CycleGAN) for nonparallel data-based VC training. A CycleGAN is a generative adversarial network (GAN) originally developed for unpaired image-to-image translation. A subjective evaluation of inter-gender conversion demonstrated that the proposed method significantly outperformed a method based on the Merlin open source neural network speech synthesis system (a parallel VC system adapted for our setup) and a GAN-based parallel VC system. This is the first research to show that the performance of a nonparallel VC method can exceed that of state-of-the-art parallel VC methods.
Current voice conversion (VC) methods can successfully convert timbre of the audio. As modeling source audios prosody effectively is a challenging task, there are still limitations of transferring source style to the converted speech. This study proposes a source style transfer method based on recognition-synthesis framework. Previously in speech generation task, prosody can be modeled explicitly with prosodic features or implicitly with a latent prosody extractor. In this paper, taking advantages of both, we model the prosody in a hybrid manner, which effectively combines explicit and implicit methods in a proposed prosody module. Specifically, prosodic features are used to explicit model prosody, while VAE and reference encoder are used to implicitly model prosody, which take Mel spectrum and bottleneck feature as input respectively. Furthermore, adversarial training is introduced to remove speaker-related information from the VAE outputs, avoiding leaking source speaker information while transferring style. Finally, we use a modified self-attention based encoder to extract sentential context from bottleneck features, which also implicitly aggregates the prosodic aspects of source speech from the layered representations. Experiments show that our approach is superior to the baseline and a competitive system in terms of style transfer; meanwhile, the speech quality and speaker similarity are well maintained.
An effective approach for voice conversion (VC) is to disentangle linguistic content from other components in the speech signal. The effectiveness of variational autoencoder (VAE) based VC (VAE-VC), for instance, strongly relies on this principle. In our prior work, we proposed a cross-domain VAE-VC (CDVAE-VC) framework, which utilized acoustic features of different properties, to improve the performance of VAE-VC. We believed that the success came from more disentangled latent representations. In this paper, we extend the CDVAE-VC framework by incorporating the concept of adversarial learning, in order to further increase the degree of disentanglement, thereby improving the quality and similarity of converted speech. More specifically, we first investigate the effectiveness of incorporating the generative adversarial networks (GANs) with CDVAE-VC. Then, we consider the concept of domain adversarial training and add an explicit constraint to the latent representation, realized by a speaker classifier, to explicitly eliminate the speaker information that resides in the latent code. Experimental results confirm that the degree of disentanglement of the learned latent representation can be enhanced by both GANs and the speaker classifier. Meanwhile, subjective evaluation results in terms of quality and similarity scores demonstrate the effectiveness of our proposed methods.