Observation of an Unusual Colossal Anisotropic Magnetoresistance Effect in an Antiferromagnetic Semiconductor


Abstract in English

Searching for novel antiferromagnetic materials with large magnetotransport response is highly demanded for constructing future spintronic devices with high stability, fast switching speed, and high density. Here we report a colossal anisotropic magnetoresistance effect in an antiferromagnetic binary compound with layered structure rare-earth dichalcogenide EuTe2. The AMR reaches 40000%, which is 4 orders of magnitude larger than that in conventional antiferromagnetic alloys. Combined magnetization, resistivity, and theoretical analysis reveal that the colossal AMR effect is attributed to a novel mechanism of vector-field tunable band structure, rather than the conventional spin-orbit coupling mechanism. Moreover, it is revealed that the strong hybridization between orbitals of Eu-layer with localized spin and Te-layer with itinerant carriers is extremely important for the large AMR effect. Our results suggest a new direction towards exploring AFM materials with prominent magnetotransport properties, which creates an unprecedented opportunity for AFM spintronics applications.

Download