Do you want to publish a course? Click here

Self-Distribution Binary Neural Networks

74   0   0.0 ( 0 )
 Added by Ping Xue
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we study the binary neural networks (BNNs) of which both the weights and activations are binary (i.e., 1-bit representation). Feature representation is critical for deep neural networks, while in BNNs, the features only differ in signs. Prior work introduces scaling factors into binary weights and activations to reduce the quantization error and effectively improves the classification accuracy of BNNs. However, the scaling factors not only increase the computational complexity of networks, but also make no sense to the signs of binary features. To this end, Self-Distribution Binary Neural Network (SD-BNN) is proposed. Firstly, we utilize Activation Self Distribution (ASD) to adaptively adjust the sign distribution of activations, thereby improve the sign differences of the outputs of the convolution. Secondly, we adjust the sign distribution of weights through Weight Self Distribution (WSD) and then fine-tune the sign distribution of the outputs of the convolution. Extensive experiments on CIFAR-10 and ImageNet datasets with various network structures show that the proposed SD-BNN consistently outperforms the state-of-the-art (SOTA) BNNs (e.g., achieves 92.5% on CIFAR-10 and 66.5% on ImageNet with ResNet-18) with less computation cost. Code is available at https://github.com/ pingxue-hfut/SD-BNN.

rate research

Read More

Convolutional neural networks trained without supervision come close to matching performance with supervised pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised convnets with preserved performance is of particular interest to make them less computationally intensive. Typical pruning methods operate during training on a task while trying to maintain the performance of the pruned network on the same task. However, in self-supervised feature learning, the training objective is agnostic on the representation transferability to downstream tasks. Thus, preserving performance for this objective does not ensure that the pruned subnetwork remains effective for solving downstream tasks. In this work, we investigate the use of standard pruning methods, developed primarily for supervised learning, for networks trained without labels (i.e. on self-supervised tasks). We show that pruned masks obtained with or without labels reach comparable performance when re-trained on labels, suggesting that pruning operates similarly for self-supervised and supervised learning. Interestingly, we also find that pruning preserves the transfer performance of self-supervised subnetwork representations.
Binarization of neural network models is considered as one of the promising methods to deploy deep neural network models on resource-constrained environments such as mobile devices. However, Binary Neural Networks (BNNs) tend to suffer from severe accuracy degradation compared to the full-precision counterpart model. Several techniques were proposed to improve the accuracy of BNNs. One of the approaches is to balance the distribution of binary activations so that the amount of information in the binary activations becomes maximum. Based on extensive analysis, in stark contrast to previous work, we argue that unbalanced activation distribution can actually improve the accuracy of BNNs. We also show that adjusting the threshold values of binary activation functions results in the unbalanced distribution of the binary activation, which increases the accuracy of BNN models. Experimental results show that the accuracy of previous BNN models (e.g. XNOR-Net and Bi-Real-Net) can be improved by simply shifting the threshold values of binary activation functions without requiring any other modification.
Previous studies dominantly target at self-supervised learning on real-valued networks and have achieved many promising results. However, on the more challenging binary neural networks (BNNs), this task has not yet been fully explored in the community. In this paper, we focus on this more difficult scenario: learning networks where both weights and activations are binary, meanwhile, without any human annotated labels. We observe that the commonly used contrastive objective is not satisfying on BNNs for competitive accuracy, since the backbone network contains relatively limited capacity and representation ability. Hence instead of directly applying existing self-supervised methods, which cause a severe decline in performance, we present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution, to minimize the loss and obtain desirable accuracy. Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.5~15% on BNNs. We further reveal that it is difficult for BNNs to recover the similar predictive distributions as real-valued models when training without labels. Thus, how to calibrate them is key to address the degradation in performance. Extensive experiments are conducted on the large-scale ImageNet and downstream datasets. Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods. Code is available at https://github.com/szq0214/S2-BNN.
112 - Kai Han , Yunhe Wang , Yixing Xu 2020
This paper formalizes the binarization operations over neural networks from a learning perspective. In contrast to classical hand crafted rules (eg hard thresholding) to binarize full-precision neurons, we propose to learn a mapping from full-precision neurons to the target binary ones. Each individual weight entry will not be binarized independently. Instead, they are taken as a whole to accomplish the binarization, just as they work together in generating convolution features. To help the training of the binarization mapping, the full-precision neurons after taking sign operations is regarded as some auxiliary supervision signal, which is noisy but still has valuable guidance. An unbiased estimator is therefore introduced to mitigate the influence of the supervision noise. Experimental results on benchmark datasets indicate that the proposed binarization technique attains consistent improvements over baselines.
Weight and activation binarization is an effective approach to deep neural network compression and can accelerate the inference by leveraging bitwise operations. Although many binarization methods have improved the accuracy of the model by minimizing the quantization error in forward propagation, there remains a noticeable performance gap between the binarized model and the full-precision one. Our empirical study indicates that the quantization brings information loss in both forward and backward propagation, which is the bottleneck of training accurate binary neural networks. To address these issues, we propose an Information Retention Network (IR-Net) to retain the information that consists in the forward activations and backward gradients. IR-Net mainly relies on two technical contributions: (1) Libra Parameter Binarization (Libra-PB): simultaneously minimizing both quantization error and information loss of parameters by balanced and standardized weights in forward propagation; (2) Error Decay Estimator (EDE): minimizing the information loss of gradients by gradually approximating the sign function in backward propagation, jointly considering the updating ability and accurate gradients. We are the first to investigate both forward and backward processes of binary networks from the unified information perspective, which provides new insight into the mechanism of network binarization. Comprehensive experiments with various network structures on CIFAR-10 and ImageNet datasets manifest that the proposed IR-Net can consistently outperform state-of-the-art quantization methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا