Do you want to publish a course? Click here

Sparse Training Theory for Scalable and Efficient Agents

302   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A fundamental task for artificial intelligence is learning. Deep Neural Networks have proven to cope perfectly with all learning paradigms, i.e. supervised, unsupervised, and reinforcement learning. Nevertheless, traditional deep learning approaches make use of cloud computing facilities and do not scale well to autonomous agents with low computational resources. Even in the cloud, they suffer from computational and memory limitations, and they cannot be used to model adequately large physical worlds for agents which assume networks with billions of neurons. These issues are addressed in the last few years by the emerging topic of sparse training, which trains sparse networks from scratch. This paper discusses sparse training state-of-the-art, its challenges and limitations while introducing a couple of new theoretical research directions which has the potential of alleviating sparse training limitations to push deep learning scalability well beyond its current boundaries. Nevertheless, the theoretical advancements impact in complex multi-agents settings is discussed from a real-world perspective, using the smart grid case study.



rate research

Read More

135 - Zijian Gao , Kele Xu , Bo Ding 2021
Recently, deep reinforcement learning (RL) algorithms have made great progress in multi-agent domain. However, due to characteristics of RL, training for complex tasks would be resource-intensive and time-consuming. To meet this challenge, mutual learning strategy between homogeneous agents is essential, which is under-explored in previous studies, because most existing methods do not consider to use the knowledge of agent models. In this paper, we present an adaptation method of the majority of multi-agent reinforcement learning (MARL) algorithms called KnowSR which takes advantage of the differences in learning between agents. We employ the idea of knowledge distillation (KD) to share knowledge among agents to shorten the training phase. To empirically demonstrate the robustness and effectiveness of KnowSR, we performed extensive experiments on state-of-the-art MARL algorithms in collaborative and competitive scenarios. The results demonstrate that KnowSR outperforms recently reported methodologies, emphasizing the importance of the proposed knowledge sharing for MARL.
Recently, researchers proposed pruning deep neural network weights (DNNs) using an $N:M$ fine-grained block sparsity mask. In this mask, for each block of $M$ weights, we have at least $N$ zeros. In contrast to unstructured sparsity, $N:M$ fine-grained block sparsity allows acceleration in actual modern hardware. So far, this was used for DNN acceleration at the inference phase. First, we suggest a method to convert a pretrained model with unstructured sparsity to a $N:M$ fine-grained block sparsity model, with little to no training. Then, to also allow such acceleration in the training phase, we suggest a novel transposable-fine-grained sparsity mask where the same mask can be used for both forward and backward passes. Our transposable mask ensures that both the weight matrix and its transpose follow the same sparsity pattern; thus the matrix multiplication required for passing the error backward can also be accelerated. We discuss the transposable constraint and devise a new measure for mask constraints, called mask-diversity (MD), which correlates with their expected accuracy. Then, we formulate the problem of finding the optimal transposable mask as a minimum-cost-flow problem and suggest a fast linear approximation that can be used when the masks dynamically change while training. Our experiments suggest 2x speed-up with no accuracy degradation over vision and language models. A reference implementation can be found at https://github.com/papers-submission/structured_transposable_masks.
60 - Martin Biehl 2017
This thesis contributes to the formalisation of the notion of an agent within the class of finite multivariate Markov chains. Agents are seen as entities that act, perceive, and are goal-directed. We present a new measure that can be used to identify entities (called $iota$-entities), some general requirements for entities in multivariate Markov chains, as well as formal definitions of actions and perceptions suitable for such entities. The intuition behind $iota$-entities is that entities are spatiotemporal patterns for which every part makes every other part more probable. The measure, complete local integration (CLI), is formally investigated in general Bayesian networks. It is based on the specific local integration (SLI) which is measured with respect to a partition. CLI is the minimum value of SLI over all partitions. We prove that $iota$-entities are blocks in specific partitions of the global trajectory. These partitions are the finest partitions that achieve a given SLI value. We also establish the transformation behaviour of SLI under permutations of nodes in the network. We go on to present three conditions on general definitions of entities. These are not fulfilled by sets of random variables i.e. the perception-action loop, which is often used to model agents, is too restrictive. We propose that any general entity definition should in effect specify a subset (called an an entity-set) of the set of all spatiotemporal patterns of a given multivariate Markov chain. The set of $iota$-entities is such a set. Importantly the perception-action loop also induces an entity-set. We then propose formal definitions of actions and perceptions for arbitrary entity-sets. These specialise to standard notions in case of the perception-action loop entity-set. Finally we look at some very simple examples.
Memory-based meta-learning is a powerful technique to build agents that adapt fast to any task within a target distribution. A previous theoretical study has argued that this remarkable performance is because the meta-training protocol incentivises agents to behave Bayes-optimally. We empirically investigate this claim on a number of prediction and bandit tasks. Inspired by ideas from theoretical computer science, we show that meta-learned and Bayes-optimal agents not only behave alike, but they even share a similar computational structure, in the sense that one agent system can approximately simulate the other. Furthermore, we show that Bayes-optimal agents are fixed points of the meta-learning dynamics. Our results suggest that memory-based meta-learning might serve as a general technique for numerically approximating Bayes-optimal agents - that is, even for task distributions for which we currently dont possess tractable models.
212 - Lei Han , Jiechao Xiong , Peng Sun 2020
StarCraft, one of the most difficult esport games with long-standing history of professional tournaments, has attracted generations of players and fans, and also, intense attentions in artificial intelligence research. Recently, Googles DeepMind announced AlphaStar, a grandmaster level AI in StarCraft II that can play with humans using comparable action space and operations. In this paper, we introduce a new AI agent, named TStarBot-X, that is trained under orders of less computations and can play competitively with expert human players. TStarBot-X takes advantage of important techniques introduced in AlphaStar, and also benefits from substantial innovations including new league training methods, novel multi-agent roles, rule-guided policy search, stabilized policy improvement, lightweight neural network architecture, and importance sampling in imitation learning, etc. We show that with orders of less computation scale, a faithful reimplementation of AlphaStars methods can not succeed and the proposed techniques are necessary to ensure TStarBot-Xs competitive performance. We reveal all technical details that are complementary to those mentioned in AlphaStar, showing the most sensitive parts in league training, reinforcement learning and imitation learning that affect the performance of the agents. Most importantly, this is an open-sourced study that all codes and resources (including the trained model parameters) are publicly accessible via url{https://github.com/tencent-ailab/tleague_projpage}. We expect this study could be beneficial for both academic and industrial future research in solving complex problems like StarCraft, and also, might provide a sparring partner for all StarCraft II players and other AI agents.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا