Do you want to publish a course? Click here

Long-lived bi$boldsymbol{ u}$o at the LHC

68   0   0.0 ( 0 )
 Added by Julia Gehrlein
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We examine the detection prospects for a long-lived bi$ u$o, a pseudo-Dirac bino which is responsible for neutrino masses, at the LHC and at dedicated long-lived particle detectors. The bi$ u$o arises in $U(1)_R$-symmetric supersymmetric models where the neutrino masses are generated through higher dimensional operators in an inverse seesaw mechanism. At the LHC the bi$ u$o is produced through squark decays and it subsequently decays to quarks, charged leptons and missing energy via its mixing with the Standard Model neutrinos. We consider long-lived bi$ u$os which escape the ATLAS or CMS detectors as missing energy and decay to charged leptons inside the proposed long-lived particle detectors FASER, CODEX-b, and MATHUSLA. We find the currently allowed region in the squark-bi$ u$o mass parameter space by recasting most recent LHC searches for jets+MET. We also determine the reach of MATHUSLA, CODEX-b and FASER. We find that a large region of parameter space involving squark masses, bi$ u$o mass and the messenger scale can be probed with MATHUSLA, ranging from bi$ u$o masses of 10 GeV-2 TeV and messenger scales $10^{2-11}$ TeV for a range of squark masses.



rate research

Read More

We study the LHC constraints on an $R$-symmetric SUSY model, where the neutrino masses are generated through higher dimensional operators involving the pseudo-Dirac bino, named bi$ u$o. We consider a particle spectrum where the squarks are heavier than the lightest neutralino, which is a pure bi$ u$o. The bi$ u$o is produced through squark decays and it subsequently decays to a combination of jets and leptons, with or without missing energy, via its mixing with the Standard Model neutrinos. We recast the most recent LHC searches for jets+missing energy with $sqrt{s}=13~$TeV and $mathcal{L}=36~{rm fb}^{-1}$ of data to determine the constraints on the squark and bi$ u$o masses in this model. We find that squarks as light as 350~GeV are allowed if the bi$ u$o is lighter than 150~GeV and squarks heavier than 950~GeV are allowed for any bi$ u$o mass. We also present forecasts for the LHC with $sqrt{s}=13$~TeV and $mathcal{L}=300~{rm fb}^{-1}$ and show that squarks up to 1150~GeV can be probed.
A gauged $U(1)_X$ extension of the Standard Model is a simple and consistent framework to naturally incorporate three right-handed neutrinos (RHNs) for generating the observed light neutrino masses and mixing by the type-I seesaw mechanism. We examine the collider testability of the $U(1)_X$ model, both in its minimal form with the conventional charges, as well as with an alternative charge assignment, via the resonant production of the $U(1)_X$ gauge boson ($Z^prime$) and its subsequent decay into a pair of RHNs. We first derive an updated upper limit on the new gauge coupling $g_X$ as a function of the $Z$-boson mass from the latest LHC dilepton searches. Then we identify the maximum possible cross section for the RHN pair-production under these constraints. Finally, we investigate the possibility of having one of the RHNs long-lived, even for a TeV-scale mass. Employing the general parametrization for the light neutrino mass matrix to reproduce the observed neutrino oscillation data, we perform a parameter scan and find a simple formula for the maximum RHN lifetime as a function of the lightest neutrino mass eigenvalue ($m_{rm lightest}$). We find that for $m_{rm lightest}lesssim 10^{-5}$ eV, one of the RHNs in the minimal $U(1)_X$ scenario can be long-lived with a displaced-vertex signature which can be searched for at the LHC and/or with a dedicated long-lived particle detector, such as MATHUSLA. In other words, once a long-lived RHN is observed, we can set an upper bound on the lightest neutrino mass in this model.
172 - S.Ambrosanio 2000
We draw a possible scenario for the observation of massive long-lived charged particles at the LHC detector ATLAS. The required flexibility of the detector triggers and of the identification and reconstruction systems are discussed. As an example, we focus on the measurement of the mass and lifetime of long-lived charged sleptons predicted in the framework of supersymmetric models with gauge-mediated supersymmetry (SUSY) breaking. In this case, the next-to-lightest SUSY particle can be the light scalar partner of the tau lepton, possibly decaying slowly into a gravitino. A wide region of the SUSY parameters space was explored. The accessible range and precision on the measurement of the SUSY breaking scale parameter sqrt(F) achievable with a counting method are assessed.
We investigate the collider signatures of neutral and charged Long-Lived Particles (LLPs), predicted by the Supersymmetric $B-L$ extension of the Standard Model (BLSSM), at the Large Hadron Collider (LHC). The BLSSM is a natural extension of the Minimal Supersymmetric Standard Model (MSSM) that can account for non-vanishing neutrino masses. We show that the lightest right-handed sneutrino can be the Lightest Supersymmetric Particle (LSP), while the Next-to-the LSP (NLSP) is either the lightest left-handed sneutrino or the left-handed stau, which are natural candidates for the LLPs. We analyze the displaced vertex signature of the neutral LLP (the lightest left-handed sneutrino), and the charged tracks associated with the charged LLP (the left-handed stau). We show that the production cross sections of our neutral and charged LLPs are relatively large, namely of order ${cal O}(1)~{rm fb}$. Thus, probing these particles at the LHC is quite plausible. In addition, we find that the displaced di-lepton associated with the lightest left-handed sneutrino has a large impact parameter that discriminates it from other SM leptons. We also emphasize that the charged track associated with the left-handed stau has a large momentum with slow moving charged tracks, hence it is distinguished from the SM background and therefore it can be accessible at the LHC.
Many models of dark matter predict long-lived particles (LLPs) that can give rise to striking signatures at the LHC. Existing searches for displaced vertices are however tailored towards heavy LLPs. In this work we show that this bias severely affects their sensitivity to LLPs with masses at the GeV scale. To illustrate this point we consider two dark sector models with light LLPs that decay hadronically: a strongly-interacting dark sector with long-lived exotic mesons, and a Higgsed dark sector with a long-lived dark Higgs boson. We study the sensitivity of an existing ATLAS search for displaced vertices and missing energy in these two models and find that current track and vertex cuts result in very low efficiency for light LLPs. To close this gap in the current search programme we suggest two possible modifications of the vertex reconstruction and the analysis cuts. We calculate projected exclusion limits for these modifications and show that they greatly enhance the sensitivity to LLPs with low mass or short decay lengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا