Do you want to publish a course? Click here

High-resolution infrared action spectroscopy of the fundamental vibrational band of CN+

138   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rotational-vibrational transitions of the fundamental vibrational modes of the $^{12}$C$^{14}$N$^+$ and $^{12}$C$^{15}$N$^+$ cations have been observed for the first time using a cryogenic ion trap apparatus with an action spectroscopy scheme. The lines P(3) to R(3) of $^{12}$C$^{14}$N$^+$ and R(1) to R(3) of $^{12}$C$^{15}$N$^+$ have been measured, limited by the trap temperature of approximately 4 K and the restricted tuning range of the infrared laser. Spectroscopic parameters are presented for both isotopologues, with band origins at 2000.7587(1) and 1970.321(1) cm$^{-1}$, respectively, as well as an isotope independent fit combining the new and the literature data.



rate research

Read More

While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non- zero vibrational temperatures. Motivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all IR transitions including bands becoming active due to resonances as well as overtones, combination and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C$_{16}$H$_{10}$) and coronene (C$_{24}$H$_{12}$), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic Density Functional Theory (DFT) calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step towards calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.
171 - P. Bonifacio 2013
Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in alpha on cosmological scales which may reach a fractional level of 10 ppm . We are conducting a Large Programme of observations with VLT UVES to explore these variations. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. and Rahmani et al. A stringent bound for Delta(alpha)/Alpha is obtained for the absorber at_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in alpha in this system is +1.3+-2.4_{stat}+-1.0_{sys} ppm if Al II lambda 1670AA and three Fe II transitions are used, and +1.1+-2.6_{stat} ppm in a lightly different analysis with only Fe II transitions used. The expectation at this sky position of the recently-reported dipolar variation of alpha is (3.2--5.4)+-1.7 ppm depending on dipole model. This constraint of Delta(alpha)/alpha at face value is not supporting this expectation but is not inconsistent with it at the 3 sigma level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_{abs}~2.4018 damped Ly alpha system towards HE 0027- 1836 provides Delta(mu)/mu = (-7.6 +- 8.1_{stat} +- 6.3_{sys}) ppm which is also consistent with a null variation. (abridged)
The protonated Argon ion, $^{36}$ArH$^{+}$, has been identified recently in the Crab Nebula (Barlow et al. 2013) from Herschel spectra. Given the atmospheric opacity at the frequency of its $J$=1-0 and $J$=2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of $^{36}$ArH$^{+}$ and $^{38}$ArH$^{+}$ rotation-vibration transitions in the $v$=1-0 band in the range 4.1-3.7 $mu$m (2450-2715 cm$^{-1}$). The wavenumbers of the $R$(0) transitions of the $v$=1-0 band are 2612.50135$pm$0.00033 and 2610.70177$pm$0.00042 cm$^{-1}$ ($pm3sigma$) for $^{36}$ArH$^{+}$ and $^{38}$ArH$^{+}$, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and a linewidth of 1 km.s$^{-1}$ of the $R$(0) line is $1.6times10^{-15}times N$($^{36}$ArH$^+$). For column densities of $^{36}$ArH$^+$ larger than $1times 10^{13}$ cm$^{-2}$, significant absorption by the $R$(0) line can be expected against bright mid-IR sources.
130 - D. Farrah 2007
(Abridged) We present R~600, 10-37um spectra of 53 ULIRGs at z<0.32, taken using the IRS on board Spitzer. All of the spectra show fine structure emission lines of Ne, O, S, Si and Ar, as well as molecular Hydrogen lines. Some ULIRGs also show emission lines of Cl, Fe, P, and atomic Hydrogen, and/or absorption features from C_2H_2, HCN, and OH. We employ diagnostics based on the fine-structure lines, as well as the EWs and luminosities of PAH features and the strength of the 9.7um silicate absorption feature (S_sil), to explore the power source behind the infrared emission in ULIRGs. We show that the IR emission from the majority of ULIRGs is powered mostly by star formation, with only ~20% of ULIRGs hosting an AGN with a comparable or greater IR luminosity than the starburst. The detection of the 14.32um [NeV] line in just under half the sample however implies that an AGN contributes significantly to the mid-IR flux in ~42% of ULIRGs. The emission line ratios, luminosities and PAH EWs are consistent with the starbursts and AGN in ULIRGs being more extincted, and for the starbursts more compac
We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles of the OH lines are narrower than the velocity profile of the [O I] 6300 Angstrom line indicating that the OH in the disk is not cospatial with the O I. This suggests that the inner optically thin region of the disk is largely devoid of molecular gas. Unlike the ro-vibrational CO emission lines, the OH lines are highly asymmetric. We show that the average CO and average OH line profiles can be fit with a model of a disk comprised of an eccentric inner wall and a circular outer disk. In this model, the vast majority of the OH flux (75%) originates from the inner wall, while the vast majority of the CO flux (65%) originates on the surface of the disk at radii greater than 13 AU. Eccentric inner disks are predicted by hydrodynamic simulations of circumstellar disks containing an embedded giant planet. We discuss the implications of such a disk geometry in light of models of planet disk tidal interactions and propose alternate explanations for the origin of the asymmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا