No Arabic abstract
This paper considers an angle-domain intelligent reflecting surface (IRS) system. We derive maximum likelihood (ML) estimators for the effective angles from the base station (BS) to the user and the effective angles of propagation from the IRS to the user. It is demonstrated that the accuracy of the estimated angles improves with the number of BS antennas. Also, deploying the IRS closer to the BS increases the accuracy of the estimated angle from the IRS to the user. Then, based on the estimated angles, we propose a joint optimization of BS beamforming and IRS beamforming, which achieves similar performance to two benchmark algorithms based on full CSI and the multiple signal classification (MUSIC) method respectively. Simulation results show that the optimized BS beam becomes more focused towards the IRS direction as the number of reflecting elements increases. Furthermore, we derive a closed-form approximation, upper bound and lower bound for the achievable rate. The analytical findings indicate that the achievable rate can be improved by increasing the number of BS antennas or reflecting elements. Specifically, the BS-user link and the BS-IRS-user link can obtain power gains of order $N$ and $NM^2$, respectively, where $N$ is the antenna number and $M$ is the number of reflecting elements.
Intelligent reflecting surface (IRS) is envisioned as a promising hardware solution to hardware cost and energy consumption in the fifth-generation (5G) mobile communication network. It exhibits great advantages in enhancing data transmission, but may suffer from performance degradation caused by inherent hardware impairment (HWI). For analysing the achievable rate (ACR) and optimizing the phase shifts in the IRS-aided wireless communication system with HWI, we consider that the HWI appears at both the IRS and the signal transceivers. On this foundation, first, we derive the closed-form expression of the average ACR and the IRS utility. Then, we formulate optimization problems to optimize the IRS phase shifts by maximizing the signal-to-noise ratio (SNR) at the receiver side, and obtain the solution by transforming non-convex problems into semidefinite programming (SDP) problems. Subsequently, we compare the IRS with the conventional decode-and-forward (DF) relay in terms of the ACR and the utility. Finally, we carry out simulations to verify the theoretical analysis, and evaluate the impact of the channel estimation errors and residual phase noises on the optimization performance. Our results reveal that the HWI reduces the ACR and the IRS utility, and begets more serious performance degradation with more reflecting elements. Although the HWI has an impact on the IRS, it still leaves opportunities for the IRS to surpass the conventional DF relay, when the number of reflecting elements is large enough or the transmitting power is sufficiently high.
In this paper, an intelligent reflecting surface (IRS) assisted spectrum sharing underlay cognitive radio (CR) wiretap channel (WTC) is studied, and we aim at enhancing the secrecy rate of secondary user in this channel subject to total power constraint at secondary transmitter (ST), interference power constraint (IPC) at primary receiver (PR) as well as unit modulus constraint at IRS. Due to extra IPC and eavesdropper (Eve) are considered, all the existing solutions for enhancing secrecy rate of IRS-assisted non-CR WTC as well as enhancing transmission rate in IRS-assisted CR channel without eavesdropper fail in this work. Therefore, we propose new numerical solutions to optimize the secrecy rate of this channel under full primary, secondary users channel state information (CSI) and three different cases of Eves CSI: full CSI, imperfect CSI with bounded estimation error, and no CSI. Simulation results show that our proposed solutions for the IRS-assisted design greatly enhance the secrecy performance compared with the existing numerical solutions with and without IRS under full and imperfect Eves CSI. And positive secrecy rate can be achieved by our proposed AN aided approach given most channel realizations under no Eves CSI case so that secure communication also can be guaranteed. All of the proposed AO algorithms are guaranteed to monotonic convergence.
Terahertz (THz) communications have emerged as a promising candidate to support the heavy data traffic and exploding network capacity in the future 6G wireless networks. However, THz communications are facing many challenges for practical implementation, such as propagation loss, signal blockage, and hardware cost. In this article, an emerging paradigm of intelligent reflecting surface (IRS) assisted THz communications is analyzed, to address the above issues, by leveraging the joint active and passive beamforming to enhance the communication quality and reduce overheads. Aiming at practical implementation, an overview of the currently available approaches of realizing THz active/passive beam steering at transmitter and IRS is presented. Based on these approaches, a beam training strategy for establishing joint beamforming is then investigated in THz communications. Moreover, various emerging and appealing 6G scenarios that integrate IRS into THz communications are envisioned. Open challenges and future research directions for this new paradigm are finally highlighted.
Terahertz (THz) communications have been envisioned as a promising enabler to provide ultra-high data transmission for sixth generation (6G) wireless networks. To tackle the blockage vulnerability brought by severe path attenuation and poor diffraction of THz waves, an intelligent reflecting surface (IRS) is put forward to smartly control the incident THz waves by adjusting the phase shifts. In this paper, we firstly design an efficient hardware structure of graphene-based IRS with phase response up to 306.82 degrees. Subsequently, to characterize the capacity of the IRS-enabled THz multiple-input multiple-output (MIMO) system, an adaptive gradient descent (A-GD) algorithm is developed by dynamically updating the step size during the iterative process, which is determined by the second-order Taylor expansion formulation. In contrast with conventional gradient descent (C-GD) algorithm with fixed step size, the A-GD algorithm evidently improves the achievable rate performance. However, both A-GD algorithm and C-GD algorithm inherit the unacceptable complexity. Then a low complexity alternating optimization (AO) algorithm is proposed by alternately optimizing the precoding matrix by a column-by-column (CBC) algorithm and the phase shift matrix of the IRS by a linear search algorithm. Ultimately, the numerical results demonstrate the effectiveness of the designed hardware structure and the considered algorithms.
Intelligent reflecting surface (IRS) is a promising technology for wireless communications, thanks to its potential capability to engineer the radio environment. However, in practice, such an envisaged benefit is attainable only when the passive IRS is of a sufficiently large size, for which the conventional uniform plane wave (UPW)-based channel model may become inaccurate. In this paper, we pursue a new channel modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the variations in signals amplitude and projected aperture across different reflecting elements, we derive both lower- and upper-bounds of the received signal-to-noise ratio (SNR) for the general uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically with the increased number of reflecting elements M as in the conventional UPW model, the SNR under the more practically applicable non-UPW model increases with M only with a diminishing return and gets saturated eventually. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and transmitter/receiver location is derived. This result shows that the SNR mainly depends on the two geometric angles formed by the transmitter/receiver locations with the IRS, as well as the boundary points of the IRS. Numerical results validate our analysis and demonstrate the importance of proper channel modelling for wireless communications aided by XL-IRS.