Formation of Organic Color Centers in Air-Suspended Carbon Nanotubes Using Vapor-Phase Reaction


Abstract in English

Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended tubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate formation of color centers in air-suspended nanotubes using vapor-phase reaction. Functionalization is directly verified on the same nanotubes by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show a strong diameter-dependent emission intensity, which can be explained with a theoretical model for chemical reactivity taking into account strain along the tube curvature. We are also able to estimate the defect density by comparing the experiments with simulations based on a one-dimensional diffusion equation, whereas the analysis of diameter dependent peak energies gives insight to the nature of the dopant states. Time-resolved measurements show a longer lifetime for color center emission compared to E$_{11}$ exciton states. Our results highlight the influence of the tube structure on vapor-phase reactivity and emission properties, providing guidelines for development of high-performance near-infrared quantum light sources.

Download