No Arabic abstract
The low-mass low-surface brightness (LSB) disc galaxy Arakelian 18 (Ark 18) resides in the Eridanus void and because of its isolation represents an ideal case to study the formation and evolution mechanisms of such a galaxy type. Its complex structure consists of an extended blue LSB disc and a bright central elliptically-shaped part hosting a massive off-centered star-forming clump. We present the in-depth study of Ark 18 based on observations with the SCORPIO-2 long-slit spectrograph and a scanning Fabry-Perot interferometer at the Russian 6-m telescope complemented by archival multi-wavelength images and SDSS spectra. Ark 18 appears to be a dark matter dominated gas-rich galaxy without a radial metallicity gradient. The observed velocity field of the ionised gas is well described by two circularly rotating components moderately inclined with respect to each other and a possible warp in the outer disc. We estimated the age of young stellar population in the galaxy centre to be ~140 Myr, while the brightest star-forming clump appears to be much younger. We conclude that the LSB disc is likely the result of a dwarf-dwarf merger with a stellar mass ratio of the components at least ~5:1 that occurred earlier than 300 Myr ago. The brightest star forming clump was likely formed later by accretion of a gas cloud.
We present the first results of a project aimed at searching for gas accretion events and interactions between late-type galaxies in the void environment. The project is based on long-slit spectroscopic and scanning Fabry-Perot interferometer observations performed with the SCORPIO and SCORPIO-2 multimode instruments at the Russian 6-m telescope, as well as archival multiwavelength photometric data. In the first paper of the series we describe the project and present a sample of 18 void galaxies with oxygen abundances that fall below the reference `metallicity-luminosity relation, or with possible signs of recent external accretion in their optical morphology. To demonstrate our approach, we considered the brightest sample galaxy NGC 428, a late-type barred spiral with several morphological peculiarities. We analysed the radial metallicity distribution, the ionized gas line-of-sight velocity and velocity dispersion maps together with WISE and SDSS images. Despite its very perturbed morphology, the velocity field of ionized gas in NGC 428 is well described by pure circular rotation in a thin flat disc with streaming motions in the central bar. We also found some local non-circular gas motions clearly related to stellar feedback processes. At the same time, we revealed a circumnuclear inclined disc in NGC 428 and a region with significant residual velocities that could be considered as a result of a recent (<0.5 Gyr) accretion event. The observed oxygen abundance gradient does not contradict this conclusion.
Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Halpha, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.
The five globular clusters (GCs) of the Fornax dSph are puzzling for two reasons; the mass in GCs is high with respect to the galaxys old stellar mass, and their survival and large distance (> 1 kpc) is at odds with naive expectations of dynamical friction. We present here a semi-analytic model, simultaneously addressing both problems in a comprehensive evolutionary framework for Fornax. Key to the model is inclusion of: 1) hydrodynamical constraints on the GC formation locations, 2) self-consistent velocity distribution functions in the dynamical friction calculations and 3) expansion of GC orbits due to a past dwarf-dwarf merger in the orbit integrations. The latter is crucial for reconciling the dynamical survival of the clusters, and their chemical properties with respect to the Fornax field stars. We find that in order for four of the GCs to survive at their observed projected location, a dark matter core of radius > 1.5 kpc and a dwarf merger with dynamical mass ratio of 1:5 to 1:2 with Fornax is required. We support the merger scenario by showing that aspects of the field star metallicity distribution function and anomalous chemical properties of GC5, are representative of a merging galaxy which is ~1/3 less massive than Fornax. Together the chemical and dynamical models suggest a scenario where three in-situ GCs in proto-Fornax were ejected to the outskirts during the merger, a GC4 formed during the merger at about 10 Gyrs ago, with GC5 being brought in by the merging galaxy to Fornax.
Nearby, low-metallicity dwarf starburst galaxies hosting active galactic nuclei (AGNs) offer the best local analogs to study the early evolution of galaxies and their supermassive black holes (BHs). Here we present a detailed multi-wavelength investigation of star formation and BH activity in the low-metallicity dwarf-dwarf galaxy merger Mrk 709. Using Hubble Space Telescope H$alpha$ and continuum imaging combined with Keck spectroscopy, we determine that the two dwarf galaxies are likely in the early stages of a merger (i.e., their first pass) and discover a spectacular $sim 10$ kpc-long string of young massive star clusters ($t lesssim 10$ Myr; $M_star gtrsim 10^5~M_odot$) between the galaxies triggered by the interaction. We find that the southern galaxy, Mrk 709 S, is undergoing a clumpy mode of star formation resembling that seen in high-redshift galaxies, with multiple young clusters/clumps having stellar masses between $10^7$ and $10^8~M_odot$. Furthermore, we present additional evidence for a low-luminosity AGN in Mrk 709 S (first identified by Reines et al. 2014 (arXiv:1405.0278) using radio and X-ray observations), including the detection of the coronal [Fe X] optical emission line. The work presented here provides a unique glimpse into processes key to hierarchical galaxy formation and BH growth in the early Universe.
The 3D motions of stars in small galaxies beyond our own are minute and yet they are crucial for our understanding of the nature of gravity and dark matter. Even for the dwarf galaxy Sculptor which is one of the best studied systems and inferred to be strongly dark matter dominated, there are conflicting reports on its mean motion around the Milky Way and the 3D internal motions of its stars have never been measured. Here we report, based on data from the Gaia space mission and the Hubble Space Telescope, a new precise measurement of Sculptors mean proper motion. From this we deduce that Sculptor is currently at its closest approach to the Milky Way and moving on an elongated high-inclination orbit that takes it much farther away than previously thought. For the first time we are also able to measure the internal motions of stars in Sculptor. We find $sigma_{R}=11.5 pm 4.3$ km/s and $sigma_{T}=8.5pm3.2$ km/s along the projected radial and tangential directions, implying that the stars in our sample move preferentially on radial orbits as quantified by the anisotropy parameter, which we find to be $betasim 0.86^{+0.12}_{-0.83}$ at a location beyond the core radius. Taken at face value such a high radial anisotropy requires abandoning conventional models for the mass distribution in Sculptor. Our sample is dominated by metal-rich stars and for these we find $beta^{MR} sim 0.95^{+0.04}_{-0.27}$, a value consistent with multi-component models where Sculptor is embedded in a cuspy dark halo as expected for cold dark matter.