Do you want to publish a course? Click here

Monoidal Abelian Envelopes with a quotient property

117   0   0.0 ( 0 )
 Added by Kevin Coulembier
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study abelian envelopes for pseudo-tensor categories with the property that every object in the envelope is a quotient of an object in the pseudo-tensor category. We establish an intrinsic criterion on pseudo-tensor categories for the existence of an abelian envelope satisfying this quotient property. This allows us to interpret the extension of scalars and Deligne tensor product of tensor categories as abelian envelopes, and to enlarge the class of tensor categories for which all extensions of scalars and tensor products are known to remain tensor categories. For an affine group scheme G, we show that pseudo-tensor subcategories of RepG have abelian envelopes with the quotient property, and we study many other such examples. This leads us to conjecture that all abelian envelopes satisfy the quotient property.



rate research

Read More

115 - Donald Yau 2019
This monograph provides a coherent development of operads, infinity operads, and monoidal categories, equipped with equivariant structures encoded by an action operad. A group operad is a planar operad with an action operad equivariant structure. In the first three parts of this monograph, we establish a foundation for group operads and for their higher coherent analogues called infinity group operads. Examples include planar, symmetric, braided, ribbon, and cactus operads, and their infinity analogues. For example, with the tools developed here, we observe that the coherent ribbon nerve of the universal cover of the framed little 2-disc operad is an infinity ribbon operad. In Part 4 we define general monoidal categories equipped with an action operad equivariant structure, and provide a unifying treatment of coherence and strictification for them. Examples of such monoidal categories include symmetric, braided, ribbon, and coboundary monoidal categories, which naturally arise in the representation theory of quantum groups and of coboundary Hopf algebras and in the theory of crystals of finite dimensional complex reductive Lie algebras. Many illustrations and examples are included. Assuming only basic category theory, this monograph is intended for graduate students and researchers. In addition to being a coherent reference for the topics covered, this book is also suitable for a graduate student seminar and a reading course.
125 - Stefano Gogioso 2018
In previous work we proved that, for categories of free finite-dimensional modules over a commutative semiring, linear compact-closed symmetric monoidal structure is a property, rather than a structure. That is, if there is such a structure, then it is uniquely defined (up to monoidal equivalence). Here we provide a novel unifying category-theoretic notion of symmetric monoidal structure with local character, which we prove to be a property for a much broader spectrum of categorical examples, including the infinite-dimensional case of relations over a quantale and the non-free case of finitely generated modules over a principal ideal domain.
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has the universal property of algebraic localisation. Spacetime structure on the base space induces a closure operator on the idempotent subunits. Restriction is then interpreted as spacetime propagation. This lets us study relativistic quantum information theory using methods entirely internal to monoidal categories. As a proof of concept, we show that quantum teleportation is only successfully supported on the intersection of Alice and Bobs causal future.
159 - Boris Shoikhet 2012
This preprint contains a part of the results of our earlier preprint arXiv:0907.3335v2 presented in a form suitable for journal publication. It covers a construction of a 2-fold monoidal structure on the category of tetramodules, with all necessary definitions, and an overview of the results of R.Taillefer [Tai1,2] on tetramodules and the Gerstenhaber-Schack cohomology [GS] (formerly served as Appendix in arXiv:0907.3335v2), as well as a computation of the Gerstenhaber-Schack cohomology for the free commutative cocommutative bialgebra S(V), for a V is a vector space.
We introduce homotopical methods based on rewriting on higher-dimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and we use rewriting methods on polygraphs to solve it. The setting is extended to more general coherence problems, seen as 3-dimensional word problems in a track category, including the case of braided monoidal categories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا