Do you want to publish a course? Click here

Noisy Truncated SGD: Optimization and Generalization

71   0   0.0 ( 0 )
 Added by Xinyan Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent empirical work on SGD applied to over-parameterized deep learning has shown that most gradient components over epochs are quite small. Inspired by such observations, we rigorously study properties of noisy truncated SGD (NT-SGD), a noisy gradient descent algorithm that truncates (hard thresholds) the majority of small gradient components to zeros and then adds Gaussian noise to all components. Considering non-convex smooth problems, we first establish the rate of convergence of NT-SGD in terms of empirical gradient norms, and show the rate to be of the same order as the vanilla SGD. Further, we prove that NT-SGD can provably escape from saddle points and requires less noise compared to previous related work. We also establish a generalization bound for NT-SGD using uniform stability based on discretized generalized Langevin dynamics. Our experiments on MNIST (VGG-5) and CIFAR-10 (ResNet-18) demonstrate that NT-SGD matches the speed and accuracy of vanilla SGD, and can successfully escape sharp minima while having better theoretical properties.



rate research

Read More

Stochastic gradient descent (SGD) has been widely studied in the literature from different angles, and is commonly employed for solving many big data machine learning problems. However, the averaging technique, which combines all iterative solutions into a single solution, is still under-explored. While some increasingly weighted averaging schemes have been considered in the literature, existing works are mostly restricted to strongly convex objective functions and the convergence of optimization error. It remains unclear how these averaging schemes affect the convergence of {it both optimization error and generalization error} (two equally important components of testing error) for {bf non-strongly convex objectives, including non-convex problems}. In this paper, we {it fill the gap} by comprehensively analyzing the increasingly weighted averaging on convex, strongly convex and non-convex objective functions in terms of both optimization error and generalization error. In particular, we analyze a family of increasingly weighted averaging, where the weight for the solution at iteration $t$ is proportional to $t^{alpha}$ ($alpha > 0$). We show how $alpha$ affects the optimization error and the generalization error, and exhibit the trade-off caused by $alpha$. Experiments have demonstrated this trade-off and the effectiveness of polynomially increased weighted averaging compared with other averaging schemes for a wide range of problems including deep learning.
We empirically show that the test error of deep networks can be estimated by simply training the same architecture on the same training set but with a different run of Stochastic Gradient Descent (SGD), and measuring the disagreement rate between the two networks on unlabeled test data. This builds on -- and is a stronger version of -- the observation in Nakkiran & Bansal 20, which requires the second run to be on an altogether fresh training set. We further theoretically show that this peculiar phenomenon arises from the emph{well-calibrated} nature of emph{ensembles} of SGD-trained models. This finding not only provides a simple empirical measure to directly predict the test error using unlabeled test data, but also establishes a new conceptual connection between generalization and calibration.
The empirical success of deep learning is often attributed to SGDs mysterious ability to avoid sharp local minima in the loss landscape, as sharp minima are known to lead to poor generalization. Recently, empirical evidence of heavy-tailed gradient noise was reported in many deep learning tasks, and it was shown in c{S}imc{s}ekli (2019a,b) that SGD can escape sharp local minima under the presence of such heavy-tailed gradient noise, providing a partial solution to the mystery. In this work, we analyze a popular variant of SGD where gradients are truncated above a fixed threshold. We show that it achieves a stronger notion of avoiding sharp minima: it can effectively eliminate sharp local minima entirely from its training trajectory. We characterize the dynamics of truncated SGD driven by heavy-tailed noises. First, we show that the truncation threshold and width of the attraction field dictate the order of the first exit time from the associated local minimum. Moreover, when the objective function satisfies appropriate structural conditions, we prove that as the learning rate decreases, the dynamics of heavy-tailed truncated SGD closely resemble those of a continuous-time Markov chain that never visits any sharp minima. Real data experiments on deep learning confirm our theoretical prediction that heavy-tailed SGD with gradient clipping finds a flatter local minima and achieves better generalization.
Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions from different input tokens to different output tokens, without affecting each other? Existing generalization bounds for RNN scale exponentially with the input length, significantly limiting their practical implications. In this paper, we show using the vanilla stochastic gradient descent (SGD), RNN can actually learn some notable concept class efficiently, meaning that both time and sample complexity scale polynomially in the input length (or almost polynomially, depending on the concept). This concept class at least includes functions where each output token is generated from inputs of earlier tokens using a smooth two-layer neural network.
Despite superior training outcomes, adaptive optimization methods such as Adam, Adagrad or RMSprop have been found to generalize poorly compared to Stochastic gradient descent (SGD). These methods tend to perform well in the initial portion of training but are outperformed by SGD at later stages of training. We investigate a hybrid strategy that begins training with an adaptive method and switches to SGD when appropriate. Concretely, we propose SWATS, a simple strategy which switches from Adam to SGD when a triggering condition is satisfied. The condition we propose relates to the projection of Adam steps on the gradient subspace. By design, the monitoring process for this condition adds very little overhead and does not increase the number of hyperparameters in the optimizer. We report experiments on several standard benchmarks such as: ResNet, SENet, DenseNet and PyramidNet for the CIFAR-10 and CIFAR-100 data sets, ResNet on the tiny-ImageNet data set and language modeling with recurrent networks on the PTB and WT2 data sets. The results show that our strategy is capable of closing the generalization gap between SGD and Adam on a majority of the tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا