Do you want to publish a course? Click here

Sleep Apnea and Respiratory Anomaly Detection from a Wearable Band and Oxygen Saturation

97   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Objective: Sleep related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device. The objective is to automatically detect abnormal respiration and estimate the Apnea-Hypopnea-Index (AHI) with a wearable respiratory device, compared to an SpO2 signal or polysomnography using a large (n = 412) dataset serving as ground truth. Methods: Simultaneously recorded polysomnographic (PSG) and wearable respiratory effort data were used to train and evaluate models in a cross-validation fashion. Time domain and complexity features were extracted, important features were identified, and a random forest model employed to detect events and predict AHI. Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%)-feature, one allowing a time lag of 30 seconds between the two signals. Results: Event-based classification resulted in areas under the receiver operating characteristic curves of 0.94, 0.86, 0.82, and areas under the precision-recall curves of 0.48, 0.32, 0.51 for the models using respiration and SpO2, respiration-only, and SpO2-only respectively. Correlation between expert-labelled and predicted AHI was 0.96, 0.78, and 0.93, respectively. Conclusions: A wearable respiratory effort signal with or without SpO2 predicted AHI accurately. Given the large dataset and rigorous testing design, we expect our models are generalizable to evaluating respiration in a variety of environments, such as at home and in critical care.



rate research

Read More

Obstructive Sleep Apnea (OSA) is a highly prevalent but inconspicuous disease that seriously jeopardizes the health of human beings. Polysomnography (PSG), the gold standard of detecting OSA, requires multiple specialized sensors for signal collection, hence patients have to physically visit hospitals and bear the costly treatment for a single detection. Recently, many single-sensor alternatives have been proposed to improve the cost efficiency and convenience. Among these methods, solutions based on RR-interval (i.e., the interval between two consecutive pulses) signals reach a satisfactory balance among comfort, portability and detection accuracy. In this paper, we advance RR-interval based OSA detection by considering its real-world practicality from energy perspectives. As photoplethysmogram (PPG) pulse sensors are commonly equipped on smart wrist-worn wearable devices (e.g., smart watches and wristbands), the energy efficiency of the detection model is crucial to fully support an overnight observation on patients. This creates challenges as the PPG sensors are unable to keep collecting continuous signals due to the limited battery capacity on smart wrist-worn devices. Therefore, we propose a novel Frequency Extraction Network (FENet), which can extract features from different frequency bands of the input RR-interval signals and generate continuous detection results with downsampled, discontinuous RR-interval signals. With the help of the one-to-multiple structure, FENet requires only one-third of the operation time of the PPG sensor, thus sharply cutting down the energy consumption and enabling overnight diagnosis. Experimental results on real OSA datasets reveal the state-of-the-art performance of FENet.
With recent advancements in deep learning methods, automatically learning deep features from the original data is becoming an effective and widespread approach. However, the hand-crafted expert knowledge-based features are still insightful. These expert-curated features can increase the models generalization and remind the model of some data characteristics, such as the time interval between two patterns. It is particularly advantageous in tasks with the clinically-relevant data, where the data are usually limited and complex. To keep both implicit deep features and expert-curated explicit features together, an effective fusion strategy is becoming indispensable. In this work, we focus on a specific clinical application, i.e., sleep apnea detection. In this context, we propose a contrastive learning-based cross attention framework for sleep apnea detection (named ConCAD). The cross attention mechanism can fuse the deep and expert features by automatically assigning attention weights based on their importance. Contrastive learning can learn better representations by keeping the instances of each class closer and pushing away instances from different classes in the embedding space concurrently. Furthermore, a new hybrid loss is designed to simultaneously conduct contrastive learning and classification by integrating a supervised contrastive loss with a cross-entropy loss. Our proposed framework can be easily integrated into standard deep learning models to utilize expert knowledge and contrastive learning to boost performance. As demonstrated on two public ECG dataset with sleep apnea annotation, ConCAD significantly improves the detection performance and outperforms state-of-art benchmark methods.
Supervised machine learning applications in the health domain often face the problem of insufficient training datasets. The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine. All classifiers exhibit in the experiments a consistent increase in sensitivity and a kappa statistic increase by between 0.007 and 0.182.
Understanding the sleep quality and architecture is essential to human beings health, which is usually represented using multiple sleep stages. A standard sleep stage determination requires Electroencephalography (EEG) signals during the expensive and labor-intensive Polysomnography (PSG) test. To overcome this inconvenience, cardiorespiratory signals are proposed for the same purpose because of the easy and comfortable acquisition by simplified devices. In this paper, we leverage our low-cost wearable multi-sensor system to acquire the cardiorespiratory signals from subjects. Three novel features are designed during the feature extraction. We then apply a Bi-directional Recurrent Neural Network architecture with Long Short-term Memory (BLSTM) to predict the four-class sleep stages. Our prediction accuracy is 80.25% on a large public dataset (417 subjects), and 80.75% on our 32 enrolled subjects, respectively. Our results outperform the previous works which either used small data sets and had the potential over-fitting issues, or used the conventional machine learning methods on large data sets.
Congestion prediction represents a major priority for traffic management centres around the world to ensure timely incident response handling. The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, however, this is a challenging task due to inter-dependencies of traffic flow both in time and space. Recently, deep learning techniques have shown significant prediction improvements over traditional models, however, open questions remain around their applicability, accuracy and parameter tuning. This paper brings two contributions in terms of: 1) applying an outlier detection an anomaly adjustment method based on incoming and historical data streams, and 2) proposing an advanced deep learning framework for simultaneously predicting the traffic flow, speed and occupancy on a large number of monitoring stations along a highly circulated motorway in Sydney, Australia, including exit and entry loop count stations, and over varying training and prediction time horizons. The spatial and temporal features extracted from the 36.34 million data points are used in various deep learning architectures that exploit their spatial structure (convolutional neuronal networks), their temporal dynamics (recurrent neuronal networks), or both through a hybrid spatio-temporal modelling (CNN-LSTM). We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future. Lastly, we prove that the anomaly adjustment method brings significant improvements to using deep learning in both time and space.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا