Do you want to publish a course? Click here

Logical-qubit operations in an error-detecting surface code

82   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We realize a suite of logical operations on a distance-two logical qubit stabilized using repeated error detection cycles. Logical operations include initialization into arbitrary states, measurement in the cardinal bases of the Bloch sphere, and a universal set of single-qubit gates. For each type of operation, we observe higher performance for fault-tolerant variants over non-fault-tolerant variants, and quantify the difference through detailed characterization. In particular, we demonstrate process tomography of logical gates, using the notion of a logical Pauli transfer matrix. This integration of high-fidelity logical operations with a scalable scheme for repeated stabilization is a milestone on the road to quantum error correction with higher-distance superconducting surface codes.



rate research

Read More

Fault-tolerant quantum computing demands many qubits with long lifetimes to conduct accurate quantum gate operations. However, external noise limits the computing time of physical qubits. Quantum error correction codes may extend such limits, but imperfect gate operations introduce errors to the correction procedure as well. The additional gate operations required due to the physical layout of qubits exacerbate the situation. Here, we use density-matrix simulations to investigate the performance change of logical qubits according to quantum error correction codes and qubit layouts and the expected performance of logical qubits with gate operation time and gate error rates. Considering current qubit technology, the small quantum error correction codes are chosen. Assuming 0.1% gate error probability, a logical qubit encoded by a 5-qubit quantum error correction code is expected to have a fidelity 0.25 higher than its physical counterpart.
Topologically quantum error corrected logical gates are complex. Chains of errors can form in space and time and diagonally in spacetime. It is highly nontrivial to determine whether a given logical gate is free of low weight combinations of errors leading to failure. We report a new tool Nestcheck capable of analyzing an arbitrary topological computation and determining the minimum number of errors required to cause failure.
Quantum data is susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction (QEC) to actively protect against both. In the smallest QEC codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Experimental demonstrations of QEC to date, using nuclear magnetic resonance, trapped ions, photons, superconducting qubits, and NV centers in diamond, have circumvented stabilizers at the cost of decoding at the end of a QEC cycle. This decoding leaves the quantum information vulnerable to physical qubit errors until re-encoding, violating a basic requirement for fault tolerance. Using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. We construct these stabilizers as parallelized indirect measurements using ancillary qubits, and evidence their non-demolition character by generating three-qubit entanglement from superposition states. We demonstrate stabilizer-based quantum error detection (QED) by subjecting a logical qubit to coherent and incoherent bit-flip errors on its constituent physical qubits. While increased physical qubit coherence times and shorter QED blocks are required to actively safeguard quantum information, this demonstration is a critical step toward larger codes based on multiple parity measurements.
The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits can be redundantly encoded in a set of physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits, four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times in a 7-qubit surface code is an important step indicating a promising route towards the realization of quantum error correction in the surface code.
The yield of physical qubits fabricated in the laboratory is much lower than that of classical transistors in production semiconductor fabrication. Actual implementations of quantum computers will be susceptible to loss in the form of physically faulty qubits. Though these physical faults must negatively affect the computation, we can deal with them by adapting error correction schemes. In this paper We have simulated statically placed single-fault lattices and lattices with randomly placed faults at functional qubit yields of 80%, 90% and 95%, showing practical performance of a defective surface code by employing actual circuit constructions and realistic errors on every gate, including identity gates. We extend Stace et al.s superplaquettes solution against dynamic losses for the surface code to handle static losses such as physically faulty qubits. The single-fault analysis shows that a static loss at the periphery of the lattice has less negative effect than a static loss at the center. The randomly-faulty analysis shows that 95% yield is good enough to build a large scale quantum computer. The local gate error rate threshold is $sim 0.3%$, and a code distance of seven suppresses the residual error rate below the original error rate at $p=0.1%$. 90% yield is also good enough when we discard badly fabricated quantum computation chips, while 80% yield does not show enough error suppression even when discarding 90% of the chips. We evaluated several metrics for predicting chip performance, and found that the average of the product of the number of data qubits and the cycle time of a stabilizer measurement of stabilizers gave the strongest correlation with post-correction residual error rates. Our analysis will help with selecting usable quantum computation chips from among the pool of all fabricated chips.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا