Do you want to publish a course? Click here

Fermis golden rule for spontaneous emission in absorptive and amplifying media

83   0   0.0 ( 0 )
 Added by Sebastian Franke
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a fundamental breakdown of the photonic spontaneous emission (SE) formula derived from Fermis golden rule, in absorptive and amplifying media, where one assumes the SE rate scales with the local photon density of states, an approach often used in more complex, semiclassical nanophotonics simulations. Using a rigorous quantization of the macroscopic Maxwell equations in the presence of arbitrary linear media, we derive a corrected Fermis golden rule and master equation for a quantum two-level system (TLS) that yields a quantum pumping term and a modified decay rate that is net positive. We show rigorous numerical results of the temporal dynamics of the TLS for an example of two coupled microdisk resonators, forming a gain-loss medium, and demonstrate the clear failure of the commonly adopted formulas based solely on the local density of states.



rate research

Read More

129 - C. Dullemond 2002
A study is made of the behavior of unstable states in simple models which nevertheless are realistic representations of situations occurring in nature. It is demonstrated that a non-exponential decay pattern will ultimately dominate decay due to a lower limit to the energy. The survival rate approaches zero faster than the inverse square of the time when the time goes to infinity.
149 - E. Langmann , G. Lindblad 2008
We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renormalization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.
We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermis golden rule (FGR), we develop a master equation termed the Floquet FGR. Unlike the conventional one, the Floquet FGR correctly describes heating dynamics, including the prethermalization regime, even for strong drives, under which the Floquet Hamiltonian is significantly dressed, and nontrivial Floquet engineering is present. The Floquet FGR depends on system size only weakly, enabling us to analyze the thermodynamic limit with small-system calculations. Our results also indicate that, during heating, the system approximately stays in the thermal state for the Floquet Hamiltonian with a gradually rising temperature.
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
72 - J. M. Zhang , Y. Liu 2016
Fermis golden rule is of great importance in quantum dynamics. However, in many textbooks on quantum mechanics, its contents and limitations are obscured by the approximations and arguments in the derivation, which are inevitable because of the generic setting considered. Here we propose to introduce it by an ideal model, in which the quasi-continuum band consists of equaldistant levels extending from $-infty $ to $+infty $, and each of them couples to the discrete level with the same strength. For this model, the transition probability in the first order perturbation approximation can be calculated analytically by invoking the Poisson summation formula. It turns out to be a emph{piecewise linear} function of time, demonstrating on one hand the key features of Fermis golden rule, and on the other hand that the rule breaks down beyond the emph{Heisenberg time}, even when the first order perturbation approximation itself is still valid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا