Do you want to publish a course? Click here

PCA Rerandomization

107   0   0.0 ( 0 )
 Added by Guosheng Yin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Mahalanobis distance between treatment group and control group covariate means is often adopted as a balance criterion when implementing a rerandomization strategy. However, this criterion may not work well for high-dimensional cases because it balances all orthogonalized covariates equally. Here, we propose leveraging principal component analysis (PCA) to identify proper subspaces in which Mahalanobis distance should be calculated. Not only can PCA effectively reduce the dimensionality for high-dimensional cases while capturing most of the information in the covariates, but it also provides computational simplicity by focusing on the top orthogonal components. We show that our PCA rerandomization scheme has desirable theoretical properties on balancing covariates and thereby on improving the estimation of average treatment effects. We also show that this conclusion is supported by numerical studies using both simulated and real examples.

rate research

Read More

78 - Xinran Li , Peng Ding 2019
Randomization is a basis for the statistical inference of treatment effects without strong assumptions on the outcome-generating process. Appropriately using covariates further yields more precise estimators in randomized experiments. R. A. Fisher suggested blocking on discrete covariates in the design stage or conducting analysis of covariance (ANCOVA) in the analysis stage. We can embed blocking into a wider class of experimental design called rerandomization, and extend the classical ANCOVA to more general regression adjustment. Rerandomization trumps complete randomization in the design stage, and regression adjustment trumps the simple difference-in-means estimator in the analysis stage. It is then intuitive to use both rerandomization and regression adjustment. Under the randomization-inference framework, we establish a unified theory allowing the designer and analyzer to have access to different sets of covariates. We find that asymptotically (a) for any given estimator with or without regression adjustment, rerandomization never hurts either the sampling precision or the estimated precision, and (b) for any given design with or without rerandomization, our regression-adjusted estimator never hurts the estimated precision. Therefore, combining rerandomization and regression adjustment yields better coverage properties and thus improves statistical inference. To theoretically quantify these statements, we discuss optimal regression-adjusted estimators in terms of the sampling precision and the estimated precision, and then measure the additional gains of the designer and the analyzer. We finally suggest using rerandomization in the design and regression adjustment in the analysis followed by the Huber--White robust standard error.
The paper tackles the unsupervised estimation of the effective dimension of a sample of dependent random vectors. The proposed method uses the principal components (PC) decomposition of sample covariance to establish a low-rank approximation that helps uncover the hidden structure. The number of PCs to be included in the decomposition is determined via a Probabilistic Principal Components Analysis (PPCA) embedded in a penalized profile likelihood criterion. The choice of penalty parameter is guided by a data-driven procedure that is justified via analytical derivations and extensive finite sample simulations. Application of the proposed penalized PPCA is illustrated with three gene expression datasets in which the number of cancer subtypes is estimated from all expression measurements. The analyses point towards hidden structures in the data, e.g. additional subgroups, that could be of scientific interest.
Incorporating covariate information into functional data analysis methods can substantially improve modeling and prediction performance. However, many functional data analysis methods do not make use of covariate or supervision information, and those that do often have high computational cost or assume that only the scores are related to covariates, an assumption that is usually violated in practice. In this article, we propose a functional data analysis framework that relates both the mean and covariance function to covariate information. To facilitate modeling and ensure the covariance function is positive semi-definite, we represent it using splines and design a map from Euclidean space to the symmetric positive semi-definite matrix manifold. Our model is combined with a roughness penalty to encourage smoothness of the estimated functions in both the temporal and covariate domains. We also develop an efficient method for fast evaluation of the objective and gradient functions. Cross-validation is used to choose the tuning parameters. We demonstrate the advantages of our approach through a simulation study and an astronomical data analysis.
In photon-limited imaging, the pixel intensities are affected by photon count noise. Many applications, such as 3-D reconstruction using correlation analysis in X-ray free electron laser (XFEL) single molecule imaging, require an accurate estimation of the covariance of the underlying 2-D clean images. Accurate estimation of the covariance from low-photon count images must take into account that pixel intensities are Poisson distributed, hence the classical sample covariance estimator is sub-optimal. Moreover, in single molecule imaging, including in-plane rotated copies of all images could further improve the accuracy of covariance estimation. In this paper we introduce an efficient and accurate algorithm for covariance matrix estimation of count noise 2-D images, including their uniform planar rotations and possibly reflections. Our procedure, steerable $e$PCA, combines in a novel way two recently introduced innovations. The first is a methodology for principal component analysis (PCA) for Poisson distributions, and more generally, exponential family distributions, called $e$PCA. The second is steerable PCA, a fast and accurate procedure for including all planar rotations for PCA. The resulting principal components are invariant to the rotation and reflection of the input images. We demonstrate the efficiency and accuracy of steerable $e$PCA in numerical experiments involving simulated XFEL datasets and rotated Yale B face data.
In this paper we propose a new algorithm for streaming principal component analysis. With limited memory, small devices cannot store all the samples in the high-dimensional regime. Streaming principal component analysis aims to find the $k$-dimensional subspace which can explain the most variation of the $d$-dimensional data points that come into memory sequentially. In order to deal with large $d$ and large $N$ (number of samples), most streaming PCA algorithms update the current model using only the incoming sample and then dump the information right away to save memory. However the information contained in previously streamed data could be useful. Motivated by this idea, we develop a new streaming PCA algorithm called History PCA that achieves this goal. By using $O(Bd)$ memory with $Bapprox 10$ being the block size, our algorithm converges much faster than existing streaming PCA algorithms. By changing the number of inner iterations, the memory usage can be further reduced to $O(d)$ while maintaining a comparable convergence speed. We provide theoretical guarantees for the convergence of our algorithm along with the rate of convergence. We also demonstrate on synthetic and real world data sets that our algorithm compares favorably with other state-of-the-art streaming PCA methods in terms of the convergence speed and performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا