No Arabic abstract
We report new dust polarization results of a nearly edge-on disk in the HH 212 protostellar system, obtained with ALMA at ~ 0.035 (14 au) resolution in continuum at lambda ~ 878 um. Dust polarization is detected within ~ 44 au of the central source, where a rotationally supported disk has formed. The polarized emission forms V-shaped structures opening to the east and probably west arising from the disk surfaces and arm structures further away in the east and west that could be due to potential spiral arms excited in the outer disk. The polarization orientations are mainly parallel to the minor axis of the disk, with some in the western part tilting slightly away from the minor axis to form a concave shape with respect to the center. This tilt of polarization orientations is expected from dust self-scattering, e.g., by 50-75 um grains in a young disk. The polarized intensity and polarization degree both peak near the central source with a small dip at the central source and decrease towards the edges. These decreases of polarized intensity and polarization degree are expected from dichroic extinction by grains aligned by poloidal fields, but may also be consistent with dust self-scattering if the grain size decreases toward the edges. It is possible that both mechanisms are needed to produce the observed dust polarization, suggesting the presence of both grain growth and poloidal fields in the disk.
The central problem in forming a star is the angular momentum in the circumstellar disk which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-velocity and poorly-collimated) molecular outflows and (high-velocity and highly-collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii. Previous observations suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ~ 10 AU scales, allowing the material in the outer disk to transport to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ~ 0.05 AU scale, enabling the material in the innermost region of the disk to accrete toward the central protostar. This is supported by the rotation of the jet measured down to ~ 10 AU from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ~ 0.05_{-0.02}^{+0.05} AU on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances to those at its base through energy and angular momentum conservation.
HH 212 is one of the well-studied protostellar systems, showing the first vertically resolved disk with a warm atmosphere around the central protostar. Here we report a detection of 9 organic molecules (including newly detected ketene, formic acid, deuterated acetonitrile, methyl formate, and ethanol) in the disk atmosphere, confirming that the disk atmosphere is, for HH 212, the chemically rich component, identified before at a lower resolution as a hot-corino. More importantly, we report the first systematic survey and abundance measurement of organic molecules in the disk atmosphere within $sim$ 40 au of the central protostar. The relative abundances of these molecules are similar to those in the hot corinos around other protostars and in Comet Lovejoy. These molecules can be either (i) originally formed on icy grains and then desorbed into gas phase or (ii) quickly formed in the gas phase using simpler species ejected from the dust mantles. The abundances and spatial distributions of the molecules provide strong constraints on models of their formation and transport in star formation. These molecules are expected to form even more complex organic molecules needed for life and deeper observations are needed to find them.
We study the near-infrared (NIR) scattering in LDN 1642, its correlation with the cloud structure, and the ability of dust models to simultaneously explain sub-millimetre emission, NIR extinction, and NIR scattering. We use observations from the HAWK-I instrument to measure the NIR surface brightness and extinction. These are compared with Herschel data on dust emission and, with radiative transfer modelling, with predictions calculated for different dust models. We find an optical depth ratio $tau(250,mu{rm m})/tau(J)approx 10^{-3}$, confirming earlier findings of high sub-millimetre emissivity. The relationships between the column density derived from dust emission and the NIR colour excesses is linear and consistent with the standard NIR extinction curve. The extinction peaks at $A_J=2.6,$mag, the NIR surface brightness remaining correlated with $N({rm H}_2)$ without saturation. Radiative transfer models can fit the sub-millimetre data with any of the tested dust models. However, these predict a NIR extinction that is higher and a NIR surface brightness that is lower than in observations. If the dust sub-millimetre emissivity is rescaled to the observed value of $tau(250,mu{rm m})/tau(J)$, dust models with high NIR albedo can reach the observed level of NIR surface brightness. The NIR extinction of the models tends to be higher than directly measured, which is reflected in the shape of the NIR surface brightness spectra. The combination of emission, extinction, and scattering measurements provides strong constraints on dust models. The observations of LDN 1642 indicate clear dust evolution, including a strong increase in the sub-millimetre emissivity, not yet fully explained by the current dust models.
(Sub)millimeter dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in disks around young stellar objects. We propose a method to constrain the opacity $kappa_ u$ in edge-on disks from a characteristic optical depth $tau_{0, u}$, the density $rho_0$ and radius $R_0$ at the disk outer edge through $kappa_ u=tau_{0, u}/(rho_0 R_0)$ where $tau_{0, u}$ is inferred from the shape of the observed flux along the major axis, $rho_0$ from gravitational stability considerations, and $R_0$ from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disk, which has high-resolution data in ALMA Band 9, 7, 6, and 3 and VLA Ka band ($lambda$=0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modeling of the HH 212 disk is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of $kappa_ u approx $ $1.9times 10^{-2}$, $1.3times 10^{-2}$, and $4.9times 10^{-3}$ cm$^2$ per gram of gas and dust for ALMA Bands 7, 6, and 3, respectively with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription $kappa_lambda=2.3times 10^{-2} (1.3 {rm mm}/lambda)$ cm$^2$ g$^{-1}$ advocated by Beckwith et al. (1990). We inferred a temperature of ~45K at the disk outer edge which increases radially inward. It is well above the sublimation temperatures of ices such as CO and N$_2$, which supports the notion that the disk chemistry cannot be completely inherited from the protostellar envelope.
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)