Do you want to publish a course? Click here

Spatial-temporal switching estimators for imaging locally concentrated dynamics

53   0   0.0 ( 0 )
 Added by Parisa Karimi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The evolution of images with physics-based dynamics is often spatially localized and nonlinear. A switching linear dynamic system (SLDS) is a natural model under which to pose such problems when the systems evolution randomly switches over the observation interval. Because of the high parameter space dimensionality, efficient and accurate recovery of the underlying state is challenging. The work presented in this paper focuses on the common cases where the dynamic evolution may be adequately modeled as a collection of decoupled, locally concentrated dynamic operators. Patch-based hybrid estimators are proposed for real-time reconstruction of images from noisy measurements given perfect or partial information about the underlying system dynamics. Numerical results demonstrate the effectiveness of the proposed approach for denoising in a realistic data-driven simulation of remotely sensed cloud dynamics.



rate research

Read More

137 - Zhe Xu , Yi Deng , Agung Julius 2020
In this paper, we present a mechanism for building hybrid system observers to differentiate between specific positions of the hybrid system. The mechanism is designed through inferring metric temporal logic (MTL) formulae from simulated trajectories from the hybrid system. We first approximate the system behavior by simulating finitely many trajectories with timerobust tube segments around them. These time-robust tube segments account for both spatial and temporal uncertainties that exist in the hybrid system with initial state variations. The inferred MTL formulae classify different time-robust tube segments and thus can be used for classifying the hybrid system behaviors in a provably correct fashion. We implement our approach on a model of a smart building testbed to distinguish two cases of room occupancy.
We propose a framework based on Recurrent Neural Networks (RNNs) to determine an optimal control strategy for a discrete-time system that is required to satisfy specifications given as Signal Temporal Logic (STL) formulae. RNNs can store information of a system over time, thus, enable us to determine satisfaction of the dynamic temporal requirements specified in STL formulae. Given a STL formula, a dataset of satisfying system executions and corresponding control policies, we can use RNNs to predict a control policy at each time based on the current and previous states of system. We use Control Barrier Functions (CBFs) to guarantee the safety of the predicted control policy. We validate our theoretical formulation and demonstrate its performance in an optimal control problem subject to partially unknown safety constraints through simulations.
112 - Wenliang Liu , Calin Belta 2021
We propose a policy search approach to learn controllers from specifications given as Signal Temporal Logic (STL) formulae. The system model is unknown, and it is learned together with the control policy. The model is implemented as a feedforward neural network (FNN). To capture the history dependency of the STL specification, we use a recurrent neural network (RNN) to implement the control policy. In contrast to prevalent model-free methods, the learning approach proposed here takes advantage of the learned model and is more efficient. We use control barrier functions (CBFs) with the learned model to improve the safety of the system. We validate our algorithm via simulations. The results show that our approach can satisfy the given specification within very few system runs, and therefore it has the potential to be used for on-line control.
This paper proposes networked dynamics to solve resource allocation problems over time-varying multi-agent networks. The state of each agent represents the amount of used resources (or produced utilities) while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by minimizing the overall cost function subject to fixed sum of resources. Each agents information is restricted to its own state and cost function and those of its immediate in-neighbors. This is motivated by distributed applications such as mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. This work provides a fast convergent solution (in comparison with linear dynamics) while considering relaxed network connectivity with quantized communication links. The proposed dynamics reaches optimal solution over switching (possibly disconnected) undirected networks as far as their union over some bounded non-overlapping time-intervals has a spanning-tree. We prove feasibility of the solution, uniqueness of the optimal state, and convergence to the optimal value under the proposed dynamics, where the analysis is applicable to similar 1st-order allocation dynamics with strongly sign-preserving nonlinearities, such as actuator saturation.
In this article, we present a finite time stopping criterion for consensus algorithms in networks with dynamic communication topology. Recent results provide asymptotic convergence to the consensus algorithm. However, the asymptotic convergence of these algorithms pose a challenge in the practical settings where the response from agents is required in finite time. To this end, we propose a Maximum-Minimum protocol which propagates the global maximum and minimum values of agent states (while running consensus algorithm) in the network. We establish that global maximum and minimum values are strictly monotonic even for a dynamic topology and can be utilized to distributively ascertain the closeness to convergence in finite time. We show that each node can have access to the global maximum and minimum by running the proposed Maximum-Minimum protocol and use it as a finite time stopping criterion for the otherwise asymptotic consensus algorithm. The practical utility of the algorithm is illustrated through experiments where each agent is instantiated by a NodeJS socket.io server.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا