Temporal Gaussian Process Regression in Logarithmic Time


Abstract in English

The aim of this article is to present a novel parallelization method for temporal Gaussian process (GP) regression problems. The method allows for solving GP regression problems in logarithmic O(log N) time, where N is the number of time steps. Our approach uses the state-space representation of GPs which in its original form allows for linear O(N) time GP regression by leveraging the Kalman filtering and smoothing methods. By using a recently proposed parallelization method for Bayesian filters and smoothers, we are able to reduce the linear computational complexity of the temporal GP regression problems into logarithmic span complexity. This ensures logarithmic time complexity when run on parallel hardware such as a graphics processing unit (GPU). We experimentally demonstrate the computational benefits on simulated and real datasets via our open-source implementation leveraging the GPflow framework.

Download