Do you want to publish a course? Click here

Probabilistic Generating Circuits

446   0   0.0 ( 0 )
 Added by Honghua Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generating functions, which are widely used in combinatorics and probability theory, encode function values into the coefficients of a polynomial. In this paper, we explore their use as a tractable probabilistic model, and propose probabilistic generating circuits (PGCs) for their efficient representation. PGCs are strictly more expressive efficient than many existing tractable probabilistic models, including determinantal point processes (DPPs), probabilistic circuits (PCs) such as sum-product networks, and tractable graphical models. We contend that PGCs are not just a theoretical framework that unifies vastly different existing models, but also show great potential in modeling realistic data. We exhibit a simple class of PGCs that are not trivially subsumed by simple combinations of PCs and DPPs, and obtain competitive performance on a suite of density estimation benchmarks. We also highlight PGCs connection to the theory of strongly Rayleigh distributions.

rate research

Read More

Neural networks serve as effective controllers in a variety of complex settings due to their ability to represent expressive policies. The complex nature of neural networks, however, makes their output difficult to verify and predict, which limits their use in safety-critical applications. While simulations provide insight into the performance of neural network controllers, they are not enough to guarantee that the controller will perform safely in all scenarios. To address this problem, recent work has focused on formal methods to verify properties of neural network outputs. For neural network controllers, we can use a dynamics model to determine the output properties that must hold for the controller to operate safely. In this work, we develop a method to use the results from neural network verification tools to provide probabilistic safety guarantees on a neural network controller. We develop an adaptive verification approach to efficiently generate an overapproximation of the neural network policy. Next, we modify the traditional formulation of Markov decision process (MDP) model checking to provide guarantees on the overapproximated policy given a stochastic dynamics model. Finally, we incorporate techniques in state abstraction to reduce overapproximation error during the model checking process. We show that our method is able to generate meaningful probabilistic safety guarantees for aircraft collision avoidance neural networks that are loosely inspired by Airborne Collision Avoidance System X (ACAS X), a family of collision avoidance systems that formulates the problem as a partially observable Markov decision process (POMDP).
Scaling probabilistic models to large realistic problems and datasets is a key challenge in machine learning. Central to this effort is the development of tractable probabilistic models (TPMs): models whose structure guarantees efficient probabilistic inference algorithms. The current landscape of TPMs is fragmented: there exist various kinds of TPMs with different strengths and weaknesses. Two of the most prominent classes of TPMs are determinantal point processes (DPPs) and probabilistic circuits (PCs). This paper provides the first systematic study of their relationship. We propose a unified analysis and shared language for discussing DPPs and PCs. Then we establish theoretical barriers for the unification of these two families, and prove that there are cases where DPPs have no compact representation as a class of PCs. We close with a perspective on the central problem of unifying these tractable models.
We introduce a method for using deep neural networks to amortize the cost of inference in models from the family induced by universal probabilistic programming languages, establishing a framework that combines the strengths of probabilistic programming and deep learning methods. We call what we do compilation of inference because our method transforms a denotational specification of an inference problem in the form of a probabilistic program written in a universal programming language into a trained neural network denoted in a neural network specification language. When at test time this neural network is fed observational data and executed, it performs approximate inference in the original model specified by the probabilistic program. Our training objective and learning procedure are designed to allow the trained neural network to be used as a proposal distribution in a sequential importance sampling inference engine. We illustrate our method on mixture models and Captcha solving and show significant speedups in the efficiency of inference.
Statistical relational frameworks such as Markov logic networks and probabilistic soft logic (PSL) encode model structure with weighted first-order logical clauses. Learning these clauses from data is referred to as structure learning. Structure learning alleviates the manual cost of specifying models. However, this benefit comes with high computational costs; structure learning typically requires an expensive search over the space of clauses which involves repeated optimization of clause weights. In this paper, we propose the first two approaches to structure learning for PSL. We introduce a greedy search-based algorithm and a novel optimization method that trade-off scalability and approximations to the structure learning problem in varying ways. The highly scalable optimization method combines data-driven generation of clauses with a piecewise pseudolikelihood (PPLL) objective that learns model structure by optimizing clause weights only once. We compare both methods across five real-world tasks, showing that PPLL achieves an order of magnitude runtime speedup and AUC gains up to 15% over greedy search.
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of prediction accuracy as well as transparent explanations are valuable. In this work, we present an explainable classification method. Our method works by first constructing a symbolic Knowledge Base from the training data, and then performing probabilistic inferences on such Knowledge Base with linear programming. Our approach achieves a level of learning performance comparable to that of traditional classifiers such as random forests, support vector machines and neural networks. It identifies decisive features that are responsible for a classification as explanations and produces results similar to the ones found by SHAP, a state of the art Shapley Value based method. Our algorithms perform well on a range of synthetic and non-synthetic data sets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا