Do you want to publish a course? Click here

Covariant tetraquark equations in quantum field theory

110   0   0.0 ( 0 )
 Added by Boris Blankleider
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We derive general covariant coupled equations of QCD describing the tetraquark in terms of a mix of four-quark states $2q2bar q$, and two-quark states $qbar q$. The coupling of $2q2bar q$ to $qbar q$ states is achieved by a simple contraction of a four-quark $qbar q$-irreducible Green function down to a two-quark $qbar q$ Bethe-Salpeter kernel. The resulting tetraquark equations are expressed in an exact field theoretic form, and are in agreement with those obtained previously by consideration of disconnected interactions; however, despite being more general, they have been derived here in a much simpler and more transparent way.



rate research

Read More

129 - Xiao-Li Luo , Jian-Hua Gao 2021
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the first order and find that only the time-like component of the chiral Wigner function is independent while other components can be explicit derivative. After further decomposing the Wigner function or equations in color space, we present the non-Abelian covariant chiral kinetic equation for the color singlet and multiplet phase-space distribution functions. These phase-space distribution functions have non-trivial Lorentz transformation rules when we define them in different reference frames. The chiral anomaly from non-Abelian gauge field arises naturally from the Berry monopole in Euclidian momentum space in the vacuum or Dirac sea contribution. The anomalous currents as non-Abelian counterparts of chiral magnetic effect and chiral vortical effect have also been derived from the non-Abelian chiral kinetic equation.
118 - L.Maiani , M.Testa 1994
The problem of causality is analyzed in the context of Local Quantum Field Theory. Contrary to recent claims, it is shown that apparent noncausal behaviour is due to a lack of the notion of sharp localizability for a relativistic quantum system. (Replaced corrupted file)
107 - F.V. Tkachov 1999
The evolution of the distribution-theoretic methods in perturbative quantum field theory is reviewed starting from Bogolyubovs pioneering 1952 work with emphasis on the theory and calculations of perturbation theory integrals.
We briefly review general concepts of renormalization in quantum field theory and discuss their application to solutions of integral equations with singular potentials in the few-nucleon sector of the low-energy effective field theory of QCD. We also describe a particular subtractive renormalization scheme and consider a specific application to a toy-model with a singular potential serving as its effective field theoretical leading-order approximation.
Tunneling in quantum field theory is worth understanding properly, not least because it controls the long term fate of our universe. There are however, a number of features of tunneling rate calculations which lack a desirable transparency, such as the necessity of analytic continuation, the appropriateness of using an effective instead of classical potential, and the sensitivity to short-distance physics. This paper attempts to review in pedagogical detail the physical origin of tunneling and its connection to the path integral. Both the traditional potential-deformation method and a recent more direct propagator-based method are discussed. Some new insights from using approximate semi-classical solutions are presented. In addition, we explore the sensitivity of the lifetime of our universe to short distance physics, such as quantum gravity, emphasizing a number of important subtleties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا