Do you want to publish a course? Click here

Learning Continuous Exponential Families Beyond Gaussian

172   0   0.0 ( 0 )
 Added by Andrey Y. Lokhov
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We address the problem of learning of continuous exponential family distributions with unbounded support. While a lot of progress has been made on learning of Gaussian graphical models, we are still lacking scalable algorithms for reconstructing general continuous exponential families modeling higher-order moments of the data beyond the mean and the covariance. Here, we introduce a computationally efficient method for learning continuous graphical models based on the Interaction Screening approach. Through a series of numerical experiments, we show that our estimator maintains similar requirements in terms of accuracy and sample complexity compared to alternative approaches such as maximization of conditional likelihood, while considerably improving upon the algorithms run-time.



rate research

Read More

93 - Alexander Jung 2019
We propose networked exponential families to jointly leverage the information in the topology as well as the attributes (features) of networked data points. Networked exponential families are a flexible probabilistic model for heterogeneous datasets with intrinsic network structure. These models can be learnt efficiently using network Lasso which implicitly pools or clusters the data points according to the intrinsic network structure and the local likelihood. The resulting method can be formulated as a non-smooth convex optimization problem which we solve using a primal-dual splitting method. This primal-dual method is appealing for big data applications as it can be implemented as a highly scalable message passing algorithm.
The exponential family is well known in machine learning and statistical physics as the maximum entropy distribution subject to a set of observed constraints, while the geometric mixture path is common in MCMC methods such as annealed importance sampling. Linking these two ideas, recent work has interpreted the geometric mixture path as an exponential family of distributions to analyze the thermodynamic variational objective (TVO). We extend these likelihood ratio exponential families to include solutions to rate-distortion (RD) optimization, the information bottleneck (IB) method, and recent rate-distortion-classification approaches which combine RD and IB. This provides a common mathematical framework for understanding these methods via the conjugate duality of exponential families and hypothesis testing. Further, we collect existing results to provide a variational representation of intermediate RD or TVO distributions as a minimizing an expectation of KL divergences. This solution also corresponds to a size-power tradeoff using the likelihood ratio test and the Neyman Pearson lemma. In thermodynamic integration bounds such as the TVO, we identify the intermediate distribution whose expected sufficient statistics match the log partition function.
There has recently been a concerted effort to derive mechanisms in vision and machine learning systems to offer uncertainty estimates of the predictions they make. Clearly, there are enormous benefits to a system that is not only accurate but also has a sense for when it is not sure. Existing proposals center around Bayesian interpretations of modern deep architectures -- these are effective but can often be computationally demanding. We show how classical ideas in the literature on exponential families on probabilistic networks provide an excellent starting point to derive uncertainty estimates in Gated Recurrent Units (GRU). Our proposal directly quantifies uncertainty deterministically, without the need for costly sampling-based estimation. We demonstrate how our model can be used to quantitatively and qualitatively measure uncertainty in unsupervised image sequence prediction. To our knowledge, this is the first result describing sampling-free uncertainty estimation for powerful sequential models such as GRUs.
Reinforcement learning (RL) is empirically successful in complex nonlinear Markov decision processes (MDPs) with continuous state spaces. By contrast, the majority of theoretical RL literature requires the MDP to satisfy some form of linear structure, in order to guarantee sample efficient RL. Such efforts typically assume the transition dynamics or value function of the MDP are described by linear functions of the state features. To resolve this discrepancy between theory and practice, we introduce the Effective Planning Window (EPW) condition, a structural condition on MDPs that makes no linearity assumptions. We demonstrate that the EPW condition permits sample efficient RL, by providing an algorithm which provably solves MDPs satisfying this condition. Our algorithm requires minimal assumptions on the policy class, which can include multi-layer neural networks with nonlinear activation functions. Notably, the EPW condition is directly motivated by popular gaming benchmarks, and we show that many classic Atari games satisfy this condition. We additionally show the necessity of conditions like EPW, by demonstrating that simple MDPs with slight nonlinearities cannot be solved sample efficiently.
We consider continuous-variable quantum key distribution with discrete-alphabet encodings. In particular, we study protocols where information is encoded in the phase of displaced coherent (or thermal) states, even though the results can be directly extended to any protocol based on finite constellations of displaced Gaussian states. In this setting, we provide a composable security analysis in the finite-size regime assuming the realistic but restrictive hypothesis of collective Gaussian attacks. Under this assumption, we can efficiently estimate the parameters of the channel via maximum likelihood estimators and bound the corresponding error in the final secret key rate.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا