Do you want to publish a course? Click here

The Dependence of the Type Ia Supernova Host Bias on Observation or Fitting Technique

115   0   0.0 ( 0 )
 Added by Jared Hand
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Brighter type Ia supernovae (SNe Ia) prefer less massive hosts with higher star formation. This bias is over-corrected for SNe Ia standardized using the standard Tripp relation, resulting in a step-like dependence of standardized distance on host properties. Using the PISCO supernova host sample and SDSS, GALEX, and 2MASS photometry, we compare host galaxy stellar mass and star formation rate (SFR) estimates from different observation and fitting techniques and their impact on the mass step and sSFR step biases. The step size for FAST++ mass estimates was $-0.04pm0.02$ mag for FAST++ and STARLIGHT, increasing by 0.02 mag for ZPEG. UV information had no effect on measured mass step size or location. Our small sample sizes resulted in all mass step size uncertainties being within 2$sigma$ significance of a zero step due. Regardless, mass step sizes were all consistently within 1$sigma$ of each other. Specific SFR (sSFR) step sizes are $0.05pm0.03$ mag (H$alpha$) and $0.06pm0.03$ mag (UV) for a reduced 51 host sample with SDSS and GALEX coverage, with 50% increase in step size uncertainties. Step location was determined by mass sample used to normalize sSFR. The step size reduces by 0.04 mag with an unconstrained location using all available 73 hosts with H$alpha$ measurements. Despite reduced sample sizes, we find no evidence that observation or fitting technique choice drives mass step measurement, but cannot conclude the same for the sSFR step. Further work will focus on differing star formation epochs and dust attenuation corrections effects on the sSFR bias.



rate research

Read More

We analyse spectroscopic measurements of 122 type Ia supernovae (SNe Ia) with z<0.09 discovered by the Palomar Transient Factory, focusing on the properties of the Si II 6355 and Ca II `near-infrared triplet absorptions. We examine the velocities of the photospheric Si II 6355, and the velocities and strengths of the photospheric and high-velocity Ca II, in the context of the stellar mass (Mstellar) and star-formation rate (SFR) of the SN host galaxies, as well as the position of the SN within its host. We find that SNe Ia with faster Si II 6355 tend to explode in more massive galaxies, with the highest velocity events only occuring in galaxies with Mstellar > 3*10^9 solar mass. We also find some evidence that these highest velocity SNe Ia explode in the inner regions of their host galaxies, similar to the study of Wang et al. (2013), although the trend is not as significant in our data. We show that these trends are consistent with some SN Ia spectral models, if the host galaxy stellar mass is interpreted as a proxy for host galaxy metallicity. We study the strength of the high-velocity component of the Ca II near-IR absorption, and show that SNe Ia with stronger high-velocity components relative to photospheric components are hosted by galaxies with low stellar mass, blue colour, and a high sSFR. Such SNe are therefore likely to arise from the youngest progenitor systems. This argues against a pure orientation effect being responsible for high-velocity features in SN Ia spectra and, when combined with other studies, is consistent with a scenario where high-velocity features are related to an interaction between the SN ejecta and circumstellar medium (CSM) local to the SN.
The Supernova Cosmology Project has conducted the `See Change programme, aimed at discovering and observing high-redshift (1.13 $leq$ z $leq$ 1.75) Type Ia supernovae (SNe Ia). We used multi-filter Hubble Space Telescope (HST) observations of massive galaxy clusters with sufficient cadence to make the observed SN Ia light curves suitable for a cosmological probe of dark energy at z > 0.5. This See Change sample of SNe Ia with multi-colour light curves will be the largest to date at these redshifts. As part of the See Change programme, we obtained ground-based spectroscopy of each discovered transient and/or its host galaxy. Here we present Very Large Telescope (VLT) spectra of See Change transient host galaxies, deriving their redshifts, and host parameters such as stellar mass and star formation rate. Of the 39 See Change transients/hosts that were observed with the VLT, we successfully determined the redshift for 26, including 15 SNe Ia at z > 0.97. We show that even in passive environments, it is possible to recover secure redshifts for the majority of SN hosts out to z = 1.5. We find that with typical exposure times of 3 - 4 hrs on an 8m-class telescope we can recover ~75% of SN Ia redshifts in the range of 0.97 < z < 1.5. Furthermore, we show that the combination of HST photometry and VLT spectroscopy is able to provide estimates of host galaxy stellar mass that are sufficiently accurate for use in a mass-step correction in the cosmological analysis.
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia Supernovae (SNe Ia), sourced from the CSP, CfA, SDSS-II, and SNLS supernova samples, to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance $rm > 5 sigma$), and decline more rapidly in massive hosts (significance $rm > 9sigma$) and in hosts with low specific star formation rates (significance $rm > 8sigma$). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts, and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ($rm sigma_{int}=0.08pm0.01$) in luminosity after standardization.
Using data drawn from the Sloan Digital Sky Survey (SDSS) and the SDSS-II Supernova Survey, we study the local environments of confirmed type Ia supernovae (SNe Ia) in the nearby Universe. At 0.05 < z < 0.15, we find that SN Ia events in blue, star-forming galaxies occur preferentially in regions of lower galaxy density relative to galaxies of like stellar mass and star-formation rate, while SNe Ia in nearby red galaxies show no significant environment dependence within the measurement uncertainties. Even though our samples of SNe in red hosts are relatively small in number, tests on simulated galaxy samples suggest that the observed distribution of environments for red SN Ia hosts is in poor agreement with a cluster type Ia rate strongly elevated relative to the field rate. Finally, after considering the impact of galaxy morphology, stellar age, stellar metallicity, and other relevant galaxy properties, we conclude that the observed correlation between the SN Ia rate and environment in the star-forming galaxy population is likely driven by a gas-phase metallicity effect, such that prompt type Ia supernovae occur more often or are more luminous in metal-poor systems.
The use of Type Ia Supernovae (SNe Ia) as cosmological tools has motivated significant effort to: understand what drives the intrinsic scatter of SN Ia distance modulus residuals after standardization, characterize the distribution of SN Ia colors, and explain why properties of the host galaxies of the SNe correlate with SN Ia distance modulus residuals. We use a compiled sample of $sim1450$ spectroscopically confirmed, photometric light-curves of SN Ia and propose a solution to these three problems simultaneously that also explains an empirical 11$sigma$ detection of the dependence of Hubble residual scatter on SN Ia color. We introduce a physical model of color where intrinsic SN Ia colors with a relatively weak correlation with luminosity are combined with extrinsic dust-like colors ($E(B-V)$) with a wide range of extinction parameter values ($R_V$). This model captures the observed trends of Hubble residual scatter and indicates that the dominant component of SN Ia intrinsic scatter is from variation in $R_V$. We also find that the recovered $E(B-V)$ and $R_V$ distributions differ based on global host-galaxy stellar mass and this explains the observed correlation ($gamma$) between mass and Hubble residuals seen in past analyses as well as an observed 4.5$sigma$ dependence of $gamma$ on SN Ia color. This finding removes any need to prescribe different intrinsic luminosities to different progenitor systems. Finally we measure biases in the equation-of-state of dark energy ($w$) up to $|Delta w|=0.04$ by replacing previous models of SN color with our dust-based model; this bias is larger than any systematic uncertainty in previous SN Ia cosmological analyses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا