Do you want to publish a course? Click here

X-raying the galaxy pair Arp 41: no collision in NGC 1232 and three ultraluminous sources in NGC 1232A

267   0   0.0 ( 0 )
 Added by Roberto Soria
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the apparent galaxy pair NGC 1232 / NGC 1232A with Chandra, looking for evidence of interactions and collisions. We report that there is no cloud of diffuse emission in NGC 1232, contrary to previous claims in the literature. Instead, we find that the small companion galaxy NGC 1232A contains three ultraluminous X-ray sources (ULXs) with peak 0.3-10 keV luminosities above 10^{40} erg/s (assuming a cosmological distance of 93 Mpc for this galaxy). For its mass, morphology, metal abundance and bright ULX population, NGC 1232A is analogous to the more nearby late-type spiral NGC 1313.

rate research

Read More

NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resembles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ($(2$$-$$4)times10^{40}$ erg s$^{-1}$) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.
Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above 1e39 erg/s. The ULX population counts several hundreds objects but only a minor fraction is well studied. Here we present a detailed analysis of all ULXs hosted in the galaxy NGC 7456. It was observed in X-rays only once in the past (in 2005) by XMM-Newton, but the observation was short and strongly affected by high background. In 2018, we obtained a new, deeper (~90 ks) XMM-Newton observation that allowed us to perform a detailed characterization of the ULXs hosted in the galaxy. ULX-1 and ULX-2, the two brightest objects (Lx~(6-10)e39 erg/s), have spectra that can be described by a two-thermal component model as often found in ULXs. ULX-1 shows also one order of magnitude in flux variability on short-term timescales (hundreds to thousand ks). The other sources (ULX-3 and ULX-4) show flux changes of at least an order of magnitude, and these objects may be candidate transient ULXs although longer X-ray monitoring or further studies are required to ascribe them to the ULX population. In addition, we found a previously undetected source that might be a new candidate ULX (labelled as ULX-5) with a luminosity of ~1e39 erg/s and hard power-law spectral shape, whose nature is still unclear and for which a background Active Galactic Nucleus cannot be excluded. We discuss the properties of all the ULXs in NGC 7456 within the framework of super-Eddington accretion onto stellar mass compact objects. Although no pulsations were detected, we cannot exclude that the sources host neutron stars.
We have identified three ultraluminous X-ray sources (ULXs) hosted by globular clusters (GCs) within NGC 1316s stellar system. These discoveries bring the total number of known ULXs in GCs up to 20. We find that the X-ray spectra of the three new sources do not deviate from the established pattern of spectral behaviour of the other known GC ULXs. The consistency of the X-ray spectral behaviour for these sources points to multiple paths of formation and evolution mechanisms for these rare and unique sources. Using the now larger sample of GC ULXs, we compare the optical properties of the entire known population of GC ULXs to other GCs across five galaxies and find that the properties of clusters that host ULXs are quite different from the typical clusters. Lastly, any trend of GC ULXs being preferentially hosted by metal-rich clusters is not strongly significant in this sample.
Recently, citet{vitral2021does} detected a central concentration of dark objects in the core-collapsed globular cluster NGC 6397, which could be interpreted as a subcluster of stellar-mass black holes. However, it is well established theoretically that any significant number of black holes in the cluster would provide strong dynamical heating and is fundamentally inconsistent with this clusters core-collapsed profile. Claims of intermediate-mass black holes in core-collapsed clusters should similarly be treated with suspicion, for reasons that have been understood theoretically for many decades. Instead, the central dark population in NGC 6397 is exactly accounted for by a compact subsystem of white dwarfs, as we demonstrate here by inspection of a previously published model that provides a good fit to this cluster. These central subclusters of heavy white dwarfs are in fact a generic feature of core-collapsed clusters, while central black hole subclusters are present in all {em non/}-collapsed clusters.
Encounters between galaxies modify their morphology, kinematics, and star formation (SF) history. The relation between these changes and external perturbations is not straightforward. The great number of parameters involved requires both the study of large samples and individual encounters where particular features, motions, and perturbations can be traced and analysed in detail. We analysed the morphology, kinematics, and dynamics of two luminous infrared spiral galaxies, NGC 5257 and NGC 5258, in which SF is mostly confined to the spiral arms, in order to understand interactions between galaxies of equivalent masses and SF processes during the encounter. Using scanning Fabry-Perot interferometry, we studied the contribution of circular and non-circular motions and the response of the ionized gas to external perturbations. We compared the kinematics with direct images of the pair and traced the SF processes and gravitational effects due to the presence of the other galaxy. The SED of each member of the pair was fitted. A mass model was fitted to the rotation curve of each galaxy. Large, non-circular motions detected in both galaxies are associated with a bar, spiral arms, and HII regions for the inner parts of the galaxies, and with the tidal interaction for the outer parts of the discs. Bifurcations in the rotation curves indicate that the galaxies have recently undergone their pericentric passage. The pattern speed of a perturbation of one of the galaxies is computed. Location of a possible corotation seems to indicate that the gravitational response of the ionized gas in the outer parts of the disc is related to the regions where ongoing SF is confined. The SED fit indicates a slightly different star formation history for each member of the pair. For both galaxies, a pseudo-isothermal halo better fits the global mass distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا