Sharp concentration for the largest and smallest fragment in a $k$-regular self-similar fragmentation


Abstract in English

We study the asymptotics of the $k$-regular self-similar fragmentation process. For $alpha > 0$ and an integer $k geq 2$, this is the Markov process $(I_t)_{t geq 0}$ in which each $I_t$ is a union of open subsets of $[0,1)$, and independently each subinterval of $I_t$ of size $u$ breaks into $k$ equally sized pieces at rate $u^alpha$. Let $k^{ - m_t}$ and $k^{ - M_t}$ be the respective sizes of the largest and smallest fragments in $I_t$. By relating $(I_t)_{t geq 0}$ to a branching random walk, we find that there exist explicit deterministic functions $g(t)$ and $h(t)$ such that $|m_t - g(t)| leq 1$ and $|M_t - h(t)| leq 1$ for all sufficiently large $t$. Furthermore, for each $n$, we study the final time at which fragments of size $k^{-n}$ exist. In particular, by relating our branching random walk to a certain point process, we show that, after suitable rescaling, the laws of these times converge to a Gumbel distribution as $n to infty$.

Download