Do you want to publish a course? Click here

MOND-like behavior in the Dirac-Milne universe -- Flat rotation curves and mass/velocity relations in galaxies and clusters

58   0   0.0 ( 0 )
 Added by Giovanni Manfredi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that in the Dirac-Milne universe (a matter-antimatter symmetric universe where the two components repel each other), rotation curves are generically flat beyond the characteristic distance of about 3 virial radii, and that a Tully-Fisher relation with exponent $approx 3$ is satisfied. Using 3D simulations with a modified version of the RAMSES code, we show that the Dirac-Milne cosmology presents a Faber-Jackson relation with a very small scatter and an exponent equal to $approx 3$ between the mass and the velocity dispersion. We also show that the mass derived from the rotation curves assuming Newtonian gravity is systematically overestimated compared to the mass really present. We also show that the Dirac-Milne universe, featuring a polarization between its matter and antimatter components, presents a behavior similar to that of MOND (Modified Newtonian Dynamics), characterized by an additional surface gravity compared to the Newtonian case. We show that in the Dirac-Milne universe, at the present epoch, the intensity of the additional gravitational field $g_{am}$ due to the presence of clouds of antimatter is of the order of a few $10^{-11}$ m/s$^2$, similar to the characteristic acceleration of MOND. We study the evolution of this additional acceleration $g_{am}$ and show that it depends on the redshift, and is therefore not a fundamental constant. Combined with its known concordance properties on SNIa luminosity distance, age, nucleosynthesis and structure formation, the Dirac-Milne cosmology may then represent an interesting alternative to the $Lambda$CDM, MOND, and other scenarios for explaining the Dark Matter and Dark Energy conundrum.



rate research

Read More

48 - Aaron A. Dutton 2019
The phenomenological basis for Modified Newtonian Dynamics (MOND) is the radial-acceleration-relation (RAR) between the observed acceleration, $a=V^2_{rot}(r)/r$, and the acceleration accounted for by the observed baryons (stars and cold gas), $a_{bar}=V_{bar}^2(r)/r$. We show that the RAR arises naturally in the NIHAO sample of 89 high-resolution LCDM cosmological galaxy formation simulations. The overall scatter from NIHAO is just 0.079 dex, consistent with observational constraints. However, we show that the scatter depends on stellar mass. At high masses ($10^9 <M_{star} <10^{11}$ Msun) the simulated scatter is just $simeq 0.04$ dex, increasing to $simeq 0.11$ dex at low masses ($10^7 < M_{star} <10^{9}$Msun). Observations show a similar dependence for the intrinsic scatter. At high masses the intrinsic scatter is consistent with the zero scatter assumed by MOND, but at low masses the intrinsic scatter is non-zero, strongly disfavoring MOND. Applying MOND to our simulations yields remarkably good fits to most of the circular velocity profiles. In cases of mild disagreement the stellar mass-to-light ratio and/or distance can be tuned to yield acceptable fits, as is often done in observational mass models. In dwarf galaxies with $M_{star}sim10^6$Msun MOND breaks down, predicting lower accelerations than observed and in our LCDM simulations. The assumptions that MOND is based on (e.g., asymptotically flat rotation curves, zero intrinsic scatter in the RAR), are approximately, but not exactly, true in LCDM. Thus if one wishes to go beyond Newtonian dynamics there is more freedom in the RAR than assumed by MOND.
We study the kinematics and scaling relations of a sample of 43 giant spiral galaxies that have stellar masses exceeding $10^{11}$ $M_odot$ and optical discs up to 80 kpc in radius. We use a hybrid 3D-1D approach to fit 3D kinematic models to long-slit observations of the H$alpha$-[NII] emission lines and we obtain robust rotation curves of these massive systems. We find that all galaxies in our sample seem to reach a flat part of the rotation curve within the outermost optical radius. We use the derived kinematics to study the high-mass end of the two most important scaling relations for spiral galaxies: the stellar/baryonic mass Tully-Fisher relation and the Fall (mass-angular momentum) relation. All galaxies in our sample, with the possible exception of the two fastest rotators, lie comfortably on both these scaling relations determined at lower masses, without any evident break or bend at the high-mass regime. When we combine our high-mass sample with lower-mass data from the Spitzer Photometry & Accurate Rotation Curves catalog, we find a slope of $alpha=4.25pm0.19$ for the stellar Tully-Fisher relation and a slope of $gamma=0.64pm0.11$ for the Fall relation. Our results indicate that most, if not all, of these rare, giant spiral galaxies are scaled
Context. Many ellipticals are surrounded by round stellar shells probably stemming from minor mergers. A new method for constraining gravitational potential in elliptical galaxies has recently been suggested. It uses the spectral line profiles of these shells to measure the circular velocity at the edge of the shell and the expansion velocity of the shell itself. MOND is an alternative to the dark matter framework aiming to solve the missing mass problem. Aims. We study how the circular and expansion velocities behave in MOND for large shells. Methods. The asymptotic behavior for infinitely large shells is derived analytically. The applicability of the asymptotic results for finitely sized shells is studied numerically on a grid of galaxies modeled with Sersic spheres. Results. Circular velocity settles asymptotically at a value determined by the baryonic mass of the galaxy forming the baryonic Tully-Fisher relation known for disk galaxies. Shell expansion velocity also becomes asymptotically constant. The expansion velocities of large shells form a multibranched analogy to the baryonic Tully-Fisher relation, together with the galactic baryonic masses. For many - but not all - shell galaxies, the asymptotic values of these two types of velocities are reached under the effective radius. If MOND is assumed to work in ellipticals, then the shell spectra allow many details of the history to be revealed about the formation of the shell system, including its age. The results pertaining to circular velocities apply to all elliptical galaxies, not only those with shells.
We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (~5 dex), and surface brightnesses (~4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass-HI mass relation and the stellar radius-HI radius relation have significant intrinsic scatter, while the HI mass-radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic-to-observed velocity (Vbar/Vobs) for different characteristic radii and values of the stellar mass-to-light ratio (M/L) at [3.6]. Assuming M/L=0.5 Msun/Lsun (as suggested by stellar population models) we find that (i) the gas fraction linearly correlates with total luminosity, (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars in line with density wave theory; and (iii) Vbar/Vobs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of M/L=0.2 Msun/Lsun as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is M/L=0.7 Msun/Lsun at [3.6]. The SPARC data are publicly available and represent an ideal test-bed for models of galaxy formation.
87 - Lin Wang , Da-Ming Chen 2020
We investigate a sub-sample of the rotation curves consisting of 45 HSB non-bulgy spiral galaxies selected from SPARC (Spitzer Photometry and Accurate Rotation Curves) database by using two dark halo models (NFW and Burkert) and MOdified Newtonian Dynamics (MOND) theory. Among these three models, the core-dominated Burkert halo model provides a better description of the observed data ($chi_{ u}^2$ = 0.33) than Navarro, Frenk and White (NFW, $chi_{ u}^2$= 0.45) and MOND model ($chi_{ u}^2$ = 0.58). So our results show that, for dark halo models, the selected 45 HSB non-bulgy spiral galaxies prefer a cored density profile to the cuspy one (NFW); We also positively find that there is a correlation between $rho_0$ and $r_0$ in Burkert model. For MOND fits, when we take $a_0$ as a free parameter, there is no obvious correlation between $a_0$ and disk central surface brightness at 3.6 $mu m$ of these HSB spiral galaxies, which is in line with the basic assumption of MOND that $a_0$ should be a universal constant. Interestingly, our fittings gives $a_0$ an average value of $(0.74 pm 0.45) times 10^{- 8}rm {cm s^{- 2}}$ if we exclude the three highest values in the sample, which is smaller than the standard value ($1.21 times 10^{-8}rm {cm s^{- 2}}$).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا