No Arabic abstract
The negative sign of the anomalous Nernst thermopower ($S_text{ANE}$) observed in Mn-Ga ordered alloys is an attractive property for thermoelectric applications exploiting the anomalous Nernst effect (ANE); however, its origin has not been clarified. In this study, to gain insight into the negative $S_text{ANE}$, we prepared epitaxial thin films of Mn$_{x}$Ga$_{100-x}$ with $x$ ranging from 56.2 to 71.7, and systematically investigated the structural, magnetic, and transport properties including the anomalous Hall effect (AHE) and the ANE. The measured $S_text{ANE}$ is negative for all samples and shows close to one order of magnitude difference among different compositions. Together with the measured transport properties, we were able to separate the two different contributions of the ANE, i.e., one originating from the transverse thermoelectric coefficient ($alpha_{xy}$), and the other one originating from the AHE acting on the longitudinal carrier flow induced by the Seebeck effect. Both contributions are found to be negative for all samples, while the experimentally obtained negative $alpha_{xy}$ exhibits a monotonic increase towards zero with increasing $x$, which is consistent with the tendency indicated by first-principles calculations. Our results show that the large difference in the negative $S_text{ANE}$ is mostly attributed to $alpha_{xy}$, and thus shed light on further enhancement of the ANE in Mn-based ordered alloys.
Ferromagnetic metallic oxides have potential applications in spincaloric devices which utilize the spin property of charge carriers for interconversion of heat and electricity through the spin Seebeck or the anomalous Nernst effect or both. In this work, we synthesized polycrystalline La0.5S0.5CoO3 by microwave irradiation method and studied its transverse thermoelectric voltage (Nernst thermopower) and change in the linear dimension of the sample (Joule magnetostriction) in response to external magnetic fields. In addition, magnetization, temperature dependences of electrical resistivity, and longitudinal Seebeck coefficient (Sxx) in absence of an external magnetic field were also measured. The sample is ferromagnetic with a Curie temperature of TC = 247 K and shows a metal-like resistivity above and below TC with a negative sign of Sxx suggesting charge transport due to electrons. Magnetic field dependence of the Nernst thermopower (Sxy) at a fixed temperature shows a rapid increase at low fields and a tendency to saturate at high fields as like the magnetization. Anomalous contribution to Sxy was extracted from total Sxy measured and it exhibits a maximum value of ~ 0.21 microV/K at 180 K for H = 50 kOe, which is comparable to the value found in a single crystal for a lower Sr content. The Joule magnetostriction is positive, i.e., the length of the sample expands along the direction of the magnetic field and it does not saturate even at 50 kOe. The magnetostriction increases with decreasing temperature below TC and reaches a maximum value of 500 ppm at T = 40 K and below. Coexistence of the anomalous Nernst thermopower and giant magnetostriction in a single compound has potential applications for thermal energy harvesting and low-temperature actuators, respectively.
The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. The ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The ANE in Mn$_{3}X$N is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn$_{3}X$N compounds, Mn$_{3}$NiN presents the most significant anomalous Nernst conductivity of 1.80 AK$^{-1}$m$^{-1}$ at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn$_{3}$NiN, being one order of magnitude larger than that in the famous Mn$_{3}$Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn$_{3}$NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a novel host material for realizing antiferromagnetic spin caloritronics which promises exciting applications in energy conversion and information processing.
We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities sigma_{xx} ranging from the low- to the high-conductivity regime. The anomalous Hall conductivity sigma_{xy}^(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from sigma_{xy}^(AH)=20 Omega^{-1}cm^{-1} due to the Berry phase effect in the high-conductivity regime to a scaling relation sigma_{xy}^(AH) proportional to sigma_{xx}^{1.6} for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.
The anomalous Hall effect in metal-insulator-semiconductor structures having thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and hole densities changed by the gate electric field. Strong and unanticipated temperature dependence, including a change of sign, of the anomalous Hall conductance $sigma_{xy}$ has been found in samples with the highest Curie temperatures. For more disordered channels, the scaling relation between $sigma_{xy}$ and $sigma_{xx}$, similar to the one observed previously for thicker samples, is recovered.
We have studied the effect of Fe addition on the structural and magnetic transitions in the magnetic shape memory alloy Ni-Mn-Ga by substituting systematically each atomic species by Fe. Calorimetric and AC susceptibility measurements have been carried out in order to study the magnetic and structural transformation properties. We find that the addition of Fe modifies the structural and magnetic transformation temperatures. Magnetic transition temperatures are displaced to higher values when Fe is substituted into Ni-Mn-Ga, while martensitic and premartensitic transformation temperatures shift to lower values. Moreover, it has been found that the electron per atom concentration essentially governs the phase stability in the quaternary system. However, the observed scaling of transition temperatures with $e/a$ differs from that reported in the related ternary system Ni-Mn-Ga.