Do you want to publish a course? Click here

Smoothed Particle Radiation Hydrodynamics: Two-Moment method with Local Eddington Tensor Closure

276   0   0.0 ( 0 )
 Added by Tsang Keung Chan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new radiative transfer method (SPH-M1RT) that is coupled dynamically with smoothed particle hydrodynamics (SPH). We implement it in the (task-based parallel) SWIFT galaxy simulation code but it can be straightforwardly implemented in other SPH codes. Our moment-based method simultaneously solves the radiation energy and flux equations in SPH, making it adaptive in space and time. We modify the M1 closure relation to stabilize radiation fronts in the optically thin limit. We also introduce anisotropic artificial viscosity and high-order artificial diffusion schemes, which allow the code to handle radiation transport accurately in both the optically thin and optically thick regimes. Non-equilibrium thermo-chemistry is solved using a semi-implicit sub-cycling technique. The computational cost of our method is independent of the number of sources and can be lowered further by using the reduced speed of light approximation. We demonstrate the robustness of our method by applying it to a set of standard tests from the cosmological radiative transfer comparison project of Iliev et al. The SPH-M1RT scheme is well-suited for modelling situations in which numerous sources emit ionising radiation, such as cosmological simulations of galaxy formation or simulations of the interstellar medium.



rate research

Read More

In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact discontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and density of that quantity. This density evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of density. We use this density or pseudo density, instead of the mass density, to formulate our SPH scheme. We call our new method as SPH with smoothed pseudo-density (SPSPH). We show that our new scheme is physically consistent and can handle discontinuities quite well.
The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator splitting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each of the sets of equations separately in time and space. The implicit radiative transfer discussed in the first paper of this series is coupled to explicit smoothed particle hydrodynamics. The result is a multi-material meshless radiation hydrodynamics code with arbitrary opacities and equations of state that performs well for problems with significant material motion. The code converges with second-order accuracy in space and first-order accuracy in time to the semianalytic solution for the Lowrie radiative shock problem and has competitive performance compared to a mesh-based radiation hydrodynamics code for a multi-material problem in two dimensions and an ablation problem inspired by inertial confinement fusion in two and three dimensions.
92 - R. Wissing , S. Shen , J. Wadsley 2021
We present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method (SPMHD) with the geometric density average force expression (GDSPH). We perform shearing box simulations with different initial setups and a wide range of resolution and dissipation parameters. We show, for the first time, that MRI with sustained turbulence can be simulated successfully with SPH, with results consistent with prior work with grid-based codes. In particular, for the stratified boxes, our simulations reproduce the characteristic butterfly diagram of the MRI dynamo with saturated turbulence for at least 100 orbits. On the contrary, traditional SPH simulations suffer from runaway growth and develop unphysically large azimuthal fields, similar to the results from a recent study with mesh-less methods. We investigated the dependency of MRI turbulence on the numerical Prandtl number in SPH, focusing on the unstratified, zero net-flux case. We found that turbulence can only be sustained with a Prandtl number larger than $sim$2.5, similar to the critical values of physical Prandtl number found in grid-code simulations. However, unlike grid-based codes, the numerical Prandtl number in SPH increases with resolution, and for a fixed Prandtl number, the resulting magnetic energy and stresses are independent of resolution. Mean-field analyses were performed on all simulations, and the resulting transport coefficients indicate no $alpha$-effect in the unstratified cases, but an active $alphaOmega$ dynamo and a diamagnetic pumping effect in the stratified medium, which are generally in agreement with previous studies. There is no clear indication of a shear-current dynamo in our simulation, which is likely to be responsible for a weaker mean-field growth in the tall, unstratified, zero net-flux simulation.
123 - Gen Chiaki , Naoki Yoshida 2015
We present a novel method for particle splitting in smoothed particle hydrodynamics simulations. Our method utilizes the Voronoi diagram for a given particle set to determine the position of fine daughter particles. We perform several test simulations to compare our method with a conventional splitting method in which the daughter particles are placed isotropically over the local smoothing length. We show that, with our method, the density deviation after splitting is reduced by a factor of about two compared with the conventional method. Splitting would smooth out the anisotropic density structure if the daughters are distributed isotropically, but our scheme allows the daughter particles to trace the original density distribution with length scales of the mean separation of their parent. We apply the particle splitting to simulations of the primordial gas cloud collapse. The thermal evolution is accurately followed to the hydrogen number density of 10^12 /cc. With the effective mass resolution of ~10^-4 Msun after the multi-step particle splitting, the protostellar disk structure is well resolved. We conclude that the method offers an efficient way to simulate the evolution of an interstellar gas and the formation of stars.
254 - Terrence S. Tricco 2019
There has been interest in recent years to assess the ability of astrophysical hydrodynamics codes to correctly model the Kelvin-Helmholtz instability. Smoothed particle hydrodynamics (SPH), in particular, has received significant attention, though there has yet to be a clear demonstration that SPH yields converged solutions that are in agreement with other methods. We have performed SPH simulations of the Kelvin-Helmholtz instability using the test problem put forward by Lecoanet et al (2016). We demonstrate that the SPH solutions converge to the reference solution in both the linear and non-linear regimes. Quantitative convergence in the strongly non-linear regime is achieved by using a physical Navier-Stokes viscosity and thermal conductivity. We conclude that standard SPH with an artificial viscosity can correctly capture the Kelvin-Helmholtz instability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا