Do you want to publish a course? Click here

Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with Delayed Gradients

534   0   0.0 ( 0 )
 Added by Xingyu Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated learning (FL) is a new machine learning framework which trains a joint model across a large amount of decentralized computing devices. Existing methods, e.g., Federated Averaging (FedAvg), are able to provide an optimization guarantee by synchronously training the joint model, but usually suffer from stragglers, i.e., IoT devices with low computing power or communication bandwidth, especially on heterogeneous optimization problems. To mitigate the influence of stragglers, this paper presents a novel FL algorithm, namely Hybrid Federated Learning (HFL), to achieve a learning balance in efficiency and effectiveness. It consists of two major components: synchronous kernel and asynchronous updater. Unlike traditional synchronous FL methods, our HFL introduces the asynchronous updater which actively pulls unsynchronized and delayed local weights from stragglers. An adaptive approximation method, Adaptive Delayed-SGD (AD-SGD), is proposed to merge the delayed local updates into the joint model. The theoretical analysis of HFL shows that the convergence rate of the proposed algorithm is $mathcal{O}(frac{1}{t+tau})$ for both convex and non-convex optimization problems.



rate research

Read More

99 - Ye Xue , Diego Klabjan , Yuan Luo 2021
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices. The heterogeneity of client datasets is one of the most important challenges of federated learning algorithms. Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data. Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients. In this work, we tackle this challenge in a different view by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID data.
Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets. Based on the data partition pattern, FL is often categorized into horizontal, vertical, and hybrid settings. Despite the fact that many works have been developed for the first two approaches, the hybrid FL setting (which deals with partially overlapped feature space and sample space) remains less explored, though this setting is extremely important in practice. In this paper, we first set up a new model-matching-based problem formulation for hybrid FL, then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data. We conduct numerical experiments on the multi-view ModelNet40 data set to validate the performance of the proposed algorithm. To the best of our knowledge, this is the first formulation and algorithm developed for the hybrid FL.
330 - Ye Yuan , Ruijuan Chen , Chuan Sun 2021
Federated learning enables a large number of clients to participate in learning a shared model while maintaining the training data stored in each client, which protects data privacy and security. Till now, federated learning frameworks are built in a centralized way, in which a central client is needed for collecting and distributing information from every other client. This not only leads to high communication pressure at the central client, but also renders the central client highly vulnerable to failure and attack. Here we propose a principled decentralized federated learning algorithm (DeFed), which removes the central client in the classical Federated Averaging (FedAvg) setting and only relies information transmission between clients and their local neighbors. The proposed DeFed algorithm is proven to reach the global minimum with a convergence rate of $O(1/T)$ when the loss function is smooth and strongly convex, where $T$ is the number of iterations in gradient descent. Finally, the proposed algorithm has been applied to a number of toy examples to demonstrate its effectiveness.
235 - Jed Mills , Jia Hu , Geyong Min 2021
Federated Learning (FL) is a recent development in the field of machine learning that collaboratively trains models without the training data leaving client devices, to preserve data privacy. In realistic FL settings, the training set is distributed over clients in a highly non-Independent and Identically Distributed (non-IID) fashion, which has been shown extensively to harm FL convergence speed and final model performance. To address this challenge, we propose a novel, generalised approach for incorporating adaptive optimisation techniques into FL with the Federated Global Biased Optimiser (FedGBO) algorithm. FedGBO accelerates FL by employing a set of global biased optimiser values during the client-training phase, which helps to reduce `client-drift from non-IID data, whilst also benefiting from adaptive optimisation. We show that the FedGBO update with a generic optimiser can be reformulated as centralised training using biased gradients and optimiser updates, and apply this theoretical framework to prove the convergence of FedGBO using momentum-Stochastic Gradient Descent (SGDm). We also conduct extensive experiments using 4 realistic FL benchmark datasets (CIFAR100, Sent140, FEMNIST, Shakespeare) and 3 popular adaptive optimisers (RMSProp, SGDm, Adam) to compare the performance of state-of-the-art adaptive-FL algorithms. The results demonstrate that FedGBO has highly competitive performance whilst achieving lower communication and computation costs, and provide practical insights into the trade-offs associated with the different adaptive-FL algorithms and optimisers for real-world FL deployments.
Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model parameters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا