Do you want to publish a course? Click here

Systematic effects on the diversity of dwarf galaxies rotation curves

64   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological simulations of structure formation are invaluable to study the evolution of the Universe and the development of galaxies in it successfully reproducing many observations in the context of the cosmological paradigm $Lambda$CDM. However, there are remarkable discrepancies with observations that are a matter of debate. One of the most recently reported is the diversity of shapes in the rotation curves of dwarf galaxies in the local Universe which is in contrast to the apparent homogeneity of rotation curves in cosmological hydrodynamic simulations. Previous studies on similar problems have shown that sometimes can be alleviated by accounting for the impact of observational effects in the comparison. For this reason, in this work we present a set of controlled experiments to measure the impact that some systematic effects, associated with modeling the observation process in a realistic way, have on the diversity of synthetic rotation curves. Our results demonstrate that factors such as spectral power, spatial resolution and inclination angle, can naturally induce noticeable fluctuations on the shape of the rotation curves, reproducing up to $47%$ of the diversity reported in the observations. This is remarkable, especially considering that we limited the sample to highly-symmetric disks simulated in isolation. This shows that a more realistic modeling of synthetic rotation curves may alleviate the reported tension between simulations and observations, without posing a challenge to the standard cosmological model of cold dark matter.



rate research

Read More

We examine the circular velocity profiles of galaxies in {Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a constant density core. The cusp vs core issue is thus better characterized as an inner mass deficit problem than as a density slope mismatch. For several galaxies the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of inner mass deficit galaxies inferred from kinematic data are incorrect.
We use a compilation of disc galaxy rotation curves to assess the role of the luminous component (baryons) in the rotation curve diversity problem. As in earlier work, we find that rotation curve shape correlates with baryonic surface density: high surface density galaxies have rapidly-rising rotation curves consistent with cuspy cold dark matter halos; slowly-rising rotation curves (characteristic of galaxies with inner mass deficits or cores) occur only in low surface density galaxies. The correlation, however, seems too weak to be the main driver of the diversity. In addition, dwarf galaxies exhibit a clear trend, from cuspy systems where baryons are unimportant in the inner mass budget to cored galaxies where baryons actually dominate. This trend constrains the various scenarios proposed to explain the diversity, such as (i) baryonic inflows and outflows during galaxy formation; (ii) dark matter self-interactions; (iii) variations in the baryonic mass structure coupled to rotation velocities through the mass discrepancy-acceleration relation (MDAR); or (iv) non-circular motions in gaseous discs. Together with analytical modeling and cosmological hydrodynamical simulations, our analysis shows that each of these scenarios has promising features, but none seems to fully account for the observed diversity. The MDAR, in particular, is inconsistent with the observed trend between rotation curve shape and baryonic importance; either the trend is caused by systematic errors in the data or the MDAR does not apply. The origin of the dwarf galaxy rotation curve diversity and its relation to the structure of cold dark matter halos remains an open issue.
We use mock interferometric HI measurements and a conventional tilted-ring modelling procedure to estimate circular velocity curves of dwarf galaxy discs from the APOSTLE suite of {Lambda}CDM cosmological hydrodynamical simulations. The modelling yields a large diversity of rotation curves for an individual galaxy at fixed inclination, depending on the line-of-sight orientation. The diversity is driven by non-circular motions in the gas; in particular, by strong bisymmetric fluctuations in the azimuthal velocities that the tilted-ring model is ill-suited to account for and that are difficult to detect in model residuals. Large misestimates of the circular velocity arise when the kinematic major axis coincides with the extrema of the fluctuation pattern, in some cases mimicking the presence of kiloparsec-scale density cores, when none are actually present. The thickness of APOSTLE discs compounds this effect: more slowly-rotating extra-planar gas systematically reduces the average line-of-sight speeds. The recovered rotation curves thus tend to underestimate the true circular velocity of APOSTLE galaxies in the inner regions. Non-circular motions provide an appealing explanation for the large apparent cores observed in galaxies such as DDO 47 and DDO 87, where the model residuals suggest that such motions might have affected estimates of the inner circular velocities. Although residuals from tilted ring models in the simulations appear larger than in observed galaxies, our results suggest that non-circular motions should be carefully taken into account when considering the evidence for dark matter cores in individual galaxies.
We present rotation curves derived for a sample of 62 late-type dwarf galaxies that have been observed as part of the Westerbork HI Survey of Spiral and Irregular Galaxies (WHISP) project. The rotation curves were derived by interactively fitting model data cubes to the observed cubes, taking rotation curve shape, HI distribution, inclination, and the size of the beam into account. This makes it possible to correct for the effects of beam smearing. The dwarf galaxies in our sample have rotation-curve shapes that are similar to those of late-type spiral galaxies, in the sense that their rotation curves, when expressed in units of disk scale lengths, rise as steeply in the inner parts and start to flatten at two disk scale lengths. None of the galaxies in our sample have solid-body rotation curves that extend beyond three scale lengths. The logarithmic outer rotation curve slopes are similar between late-type dwarf and spiral galaxies. Thus, whether the flat part of the rotation curve is reached seems to depend more on the extent of the rotation curve than on its amplitude. We also find that the outer rotation curve shape does not strongly depend on luminosity, at least for galaxies fainter than M_R~-19. We find that in spiral galaxies and in the central regions of late-type dwarf galaxies, the shape of the central distribution of light and the inner rise of the rotation curve are related. This implies that galaxies with stronger central concentrations of light also have higher central mass densities, and it suggests that the luminous mass dominates the gravitational potential in the central regions, even in low surface brightness dwarf galaxies.
83 - R.H. Sanders 2018
I consider the observed rotation curves of 12 gas-dominated low-surface-brightness galaxies -- objects in which the mass of gas ranges between 2.2 and 27 times the mass of the stellar disk (mean=9.4). This means that, in the usual decomposition of rotation curves into those resulting from various mass components, the mass-to-light ratio of the luminous stellar disk effectively vanishes as an additional adjustable parameter. It is seen that the observed rotation curves reflect the observed structure in gas surface density distribution often in detail. This fact is difficult to comprehend in the context of the dark matter paradigm where the dark halo completely dominates the gravitational potential in the low surface density systems; however it is expected result in the context of modified Newtonian dynamics (MOND) in which the baryonic matter is the only component. With MOND the calculated rotation curves are effectively parameter-free predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا