No Arabic abstract
In this paper, we present a simple artificial damping method to enhance the robustness of total Lagrangian smoothed particle hydrodynamics (TL-SPH). Specifically, an artificial damping stress based on the Kelvin-Voigt type damper with a scaling factor imitating a von Neumann-Richtmyer type artificial viscosity is introduced in the constitutive equation to alleviate the spurious oscillation in the vicinity of the sharp spatial gradients. After validating the robustness and accuracy of the present method with a set of benchmark tests with very challenging cases, we demonstrate its potentials in the field of bio-mechanics by simulating the deformation of complex stent structures.
For conventional smoothed particle hydrodynamics (SPH), obtaining the static solution of a problem is time-consuming. To address this drawback, we propose an efficient dynamic relaxation method by adding large artificial-viscosity-based damping into the momentum conservation equation. Then, operator splitting methods are introduced to discretize the added viscous term for relaxing the time-step limit. To further improve the convergence rate, a random-choice strategy is adopted, in which the viscous term is imposed randomly rather than at every time step. In addition, to avoid the thread-conflict induced by applying shared-memory parallelization to accelerate implicit method, a splitting cell-linked list scheme is devised. A number of benchmark tests suggest that the present method helps systems achieve equilibrium state efficiently.
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPHysics code and validated for different canonical experiments, such as the single-phase and multiphase Poiseuille and Couette test cases. The method is accurate even for the multiphase case for which two phases are simulated. The shifting algorithm and the variable smoothing length formalism has been applied in the multiphase SPH model to improve the numerical results at the interphase even when it is highly deformed and non-linear effects become important. The obtained accuracy in the validation tests and the good interphase definition in the instability cases indicate an important improvement in the numerical results compared with single-phase and multiphase models where the shifting algorithm and the variable smoothing length formalism are not applied.
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact discontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and density of that quantity. This density evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of density. We use this density or pseudo density, instead of the mass density, to formulate our SPH scheme. We call our new method as SPH with smoothed pseudo-density (SPSPH). We show that our new scheme is physically consistent and can handle discontinuities quite well.
The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator splitting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each of the sets of equations separately in time and space. The implicit radiative transfer discussed in the first paper of this series is coupled to explicit smoothed particle hydrodynamics. The result is a multi-material meshless radiation hydrodynamics code with arbitrary opacities and equations of state that performs well for problems with significant material motion. The code converges with second-order accuracy in space and first-order accuracy in time to the semianalytic solution for the Lowrie radiative shock problem and has competitive performance compared to a mesh-based radiation hydrodynamics code for a multi-material problem in two dimensions and an ablation problem inspired by inertial confinement fusion in two and three dimensions.
We present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method (SPMHD) with the geometric density average force expression (GDSPH). We perform shearing box simulations with different initial setups and a wide range of resolution and dissipation parameters. We show, for the first time, that MRI with sustained turbulence can be simulated successfully with SPH, with results consistent with prior work with grid-based codes. In particular, for the stratified boxes, our simulations reproduce the characteristic butterfly diagram of the MRI dynamo with saturated turbulence for at least 100 orbits. On the contrary, traditional SPH simulations suffer from runaway growth and develop unphysically large azimuthal fields, similar to the results from a recent study with mesh-less methods. We investigated the dependency of MRI turbulence on the numerical Prandtl number in SPH, focusing on the unstratified, zero net-flux case. We found that turbulence can only be sustained with a Prandtl number larger than $sim$2.5, similar to the critical values of physical Prandtl number found in grid-code simulations. However, unlike grid-based codes, the numerical Prandtl number in SPH increases with resolution, and for a fixed Prandtl number, the resulting magnetic energy and stresses are independent of resolution. Mean-field analyses were performed on all simulations, and the resulting transport coefficients indicate no $alpha$-effect in the unstratified cases, but an active $alphaOmega$ dynamo and a diamagnetic pumping effect in the stratified medium, which are generally in agreement with previous studies. There is no clear indication of a shear-current dynamo in our simulation, which is likely to be responsible for a weaker mean-field growth in the tall, unstratified, zero net-flux simulation.