Test-beam characterisation of the CLICTD technology demonstrator - a small collection electrode High-Resistivity CMOS pixel sensor with simultaneous time and energy measurement


Abstract in English

The CLIC Tracker Detector (CLICTD) is a monolithic pixel sensor. It is fabricated in a 180 nm CMOS imaging process, modified with an additional deep low-dose n-type implant to obtain full lateral depletion. The sensor features a small collection diode, which is essential for achieving a low input capacitance. The CLICTD sensor was designed as a technology demonstrator in the context of the tracking detector studies for the Compact Linear Collider (CLIC). Its design characteristics are of broad interest beyond CLIC, for HL-LHC tracking detector upgrades. It is produced in two different pixel flavours: one with a continuous deep n-type implant, and one with a segmented n-type implant to ensure fast charge collection. The pixel matrix consists of $16times128$ detection channels measuring $300 times 30$ microns. Each detection channel is segmented into eight sub-pixels to reduce the amount of digital circuity while maintaining a small collection electrode pitch. This paper presents the characterisation results of the CLICTD sendor in a particle beam. The different pixel flavours are compared in detail by using the simultaneous time-over-threshold and time-of-arrival measurement functionalities. Most notably, a time resolution down to $(5.8 pm 0.1)$ ns and a spatial resolution down to $(4.6 pm 0.2)$ microns are measured. The hit detection efficiency is found to be well above 99.7% for thresholds of the order of several hundred electrons.

Download