Do you want to publish a course? Click here

The Saric{c}ic{c}ek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of Vestoids

162   0   0.0 ( 0 )
 Added by Maria Schonbachler
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Saric{c}ic{c}ek howardite meteorite shower consisting of 343 documented stones occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Saric{c}ic{c}ek experienced a complex cosmic ray exposure history, exposed during ~12-14 Ma in a regolith near the surface of a parent asteroid, and that an ca.1 m sized meteoroid was launched by an impact 22 +/- 2 Ma ago to Earth (as did one third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 +/- 2.5 Ma and 4553 +/- 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U-Pb age of 4525 +/- 17 Ma, K-Ar age of ~3.9 Ga, and the U,Th-He ages of 1.8 +/- 0.7 and 2.6 +/- 0.3 Ga are interpreted to represent thermal metamorphic and impact-related resetting ages, respectively. Petrographic, geochemical and O-, Cr- and Ti- isotopic studies confirm that Saric{c}ic{c}ek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Saric{c}ic{c}ek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 +/- 0.8 kms-1 from NW, fragmentations at 37, 33, 31 and 27 km altitude, and provide a pre-atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Saric{c}ic{c}ek with the Vesta asteroid family spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the disruption of a ca.1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids <4 m in size to account for the influx of meteorites from this HED clan.



rate research

Read More

This work reports high quality NIR spectra, and their respective interpretations, for eight Vp type asteroids, as defined by Carvano et al. (2010), that were observed at the NASA Infrared Telescope Facility on January 14, 2013 UT. They include (3867) Shiretoko, (5235) Jean-Loup, (5560) Amytis, (6331) 1992 FZ1, (6976) Kanatsu, (17469) 1991 BT, (29796) 1999 CW77, and (30872) 1992 EM17. All eight asteroids exhibit the broad 0.9 and 1.9 micron mineral absorption features indicative of pyroxene on each asteroids surface. Data reduction and analysis via multiple techniques produced consistent results for the derived spectral absorption band centers and average pyroxene surface chemistries for all eight asteroids (Reddy et al., 2012; Lindsay et al., 2013,2014; Gaffey et al., 2002; Burbine et al., 2009). (3867) Shiretoko is most consistent with the eucrite meteorites while the remaining seven asteroids are most consistent with the howardite meteorites. The existing evidence suggests that all eight of these Vp type asteroids are genetic Vestoids that probably originated from Vestas surface.
129 - S. Marchi 2013
The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties of one of the most important and intriguing main belt asteroids (MBAs). In this paper, we focus on the size frequency distributions (SFDs) of sub-kilometer impact craters observed at high spatial resolution on several selected young terrains on Vesta. These small crater populations offer an excellent opportunity to determine the nature of their asteroidal precursors (namely MBAs) at sizes that are not directly observable from ground-based telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA surfaces observed by spacecraft thus far, the young terrains examined had crater spatial densities that were far from empirical saturation. Overall, we find that the cumulative power-law index (slope) of small crater SFDs on Vesta is fairly consistent with predictions derived from current collisional and dynamical models down to a projectile size of ~10 m diameter (Bottke et al., 2005a,b). The shape of the impactor SFD for small projectile sizes does not appear to have changed over the last several billions of years, and an argument can be made that the absolute number of small MBAs has remained roughly constant (within a factor of 2) over the same time period. The apparent steady state nature of the main belt population potentially provides us with a set of intriguing constraints that can be used to glean insights into the physical evolution of individual MBAs as well as the main belt as an ensemble.
The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial planets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history and its relationship with Vestoids and howardite-eucrite-diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east-west and north-south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite-rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.
On the 27th of November 2015, at 10:43:45.526 UTC, a fireball was observed across South Australia by ten Desert Fireball Network observatories lasting 6.1 s. A $sim37$ kg meteoroid entered the atmosphere with a speed of 13.68$pm0.09,mbox{km s}^{-1}$ and was observed ablating from a height of 85 km down to 18 km, having slowed to 3.28$pm0.21 ,mbox{km s}^{-1}$. Despite the relatively steep 68.5$^circ$ trajectory, strong atmospheric winds significantly influenced the darkfight phase and the predicted fall line, but the analysis put the fall site in the centre of Kati Thanda - Lake Eyre South. Kati Thanda has metres-deep mud under its salt-encrusted surface. Reconnaissance of the area where the meteorite landed from a low flying aircraft revealed a 60 cm circular feature in the muddy lake, less than 50 m from the predicted fall line. After a short search, which again employed light aircraft, the meteorite was recovered on the 31st December 2015 from a depth of 42 cm. Murrili is the first recovered observed fall by the digital Desert Fireball Network (DFN). In addition to its scientific value, connecting composition to solar system context via orbital data, the recover demonstrates and validates the capabilities of the DFN, with its next generation remote observatories and automated data reduction pipeline.
We introduce an innovative three-dimensional spectral approach (three band parameter space with polyhedrons) that can be used for both qualitative and quantitative analyses improving the characterization of surface heterogeneity of (4) Vesta. It is an advanced and more robust methodology compared to the standard two-dimensional spectral approach (two band parameter space). The Dawn Framing Camera (FC) color data obtained during High Altitude Mapping Orbit (resolution ~ 60 m/pixel) is used. The main focus is on the howardite-eucrite-diogenite (HED) lithologies containing carbonaceous chondritic material, olivine, and impact-melt. The archived spectra of HEDs and their mixtures, from RELAB, HOSERLab and USGS databases as well as our laboratory-measured spectra are used for this study. Three-dimensional convex polyhedrons are defined using computed band parameter values of laboratory spectra. Polyhedrons based on the parameters of Band Tilt (R0.92{mu}m/R0.96{mu}m), Mid Ratio ((R0.75{mu}m/R0.83{mu}m)/(R0.83{mu}m/R0.92{mu}m)) and reflectance at 0.55 {mu}m (R0.55{mu}m) are chosen for the present analysis. An algorithm in IDL programming language is employed to assign FC data points to the respective polyhedrons. The Arruntia region in the northern hemisphere of Vesta is selected for a case study because of its geological and mineralogical importance. We observe that this region is eucrite-dominated howarditic in composition. The extent of olivine-rich exposures within an area of 2.5 crater radii is ~ 12% larger than the previous finding (Thangjam et al., 2014). Lithologies of nearly pure CM2-chondrite, olivine, glass, and diogenite are not found in this region. Our spectral approach can be extended to the entire Vestan surface to study the heterogeneous surface composition and its geology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا