High-fidelity geometric quantum gates with short paths on superconducting circuits


Abstract in English

Geometric phases are robust against certain types of local noises, and thus provide a promising way towards high-fidelity quantum gates. However, comparing with the dynamical ones, previous implementations of nonadiabatic geometric quantum gates usually require longer evolution time, due to the needed longer evolution path. Here, we propose a scheme to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques, instead of deliberated pulse control in previous investigations, which can thus further suppress the influence from the environment induced noises. Specifically, we illustrate the idea on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer. As the current scheme shortens the geometric evolution path, we can obtain ultra-high gate fidelity, especially for the two-qubit gate case, as verified by our numerical simulation. Therefore, our protocol suggests a promising way towards high-fidelity and roust quantum computation on a solid-state quantum system.

Download