Do you want to publish a course? Click here

Cuts and Isogenies

68   0   0.0 ( 0 )
 Added by Matthew Von Hippel
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We consider the genus-one curves which arise in the cuts of the sunrise and in the elliptic double-box Feynman integrals. We compute and compare invariants of these curves in a number of ways, including Feynman parametrization, lightcone and Baikov (in full and loop-by-loop variants). We find that the same geometry for the genus-one curves arises in all cases, which lends support to the idea that there exists an invariant notion of genus-one geometry, independent on the way it is computed. We further indicate how to interpret some previous results which found that these curves are related by isogenies instead.



rate research

Read More

We discuss various aspects of multi-instanton configurations in generic multi-cut matrix models. Explicit formulae are presented in the two-cut case and, in particular, we obtain general formulae for multi-instanton amplitudes in the one-cut matrix model case as a degeneration of the two-cut case. These formulae show that the instanton gas is ultra-dilute, due to the repulsion among the matrix model eigenvalues. We exemplify and test our general results in the cubic matrix model, where multi-instanton amplitudes can be also computed with orthogonal polynomials. As an application, we derive general expressions for multi-instanton contributions in two-dimensional quantum gravity, verifying them by computing the instanton corrections to the string equation. The resulting amplitudes can be interpreted as regularized partition functions for multiple ZZ-branes, which take into full account their back-reaction on the target geometry. Finally, we also derive structural properties of the trans-series solution to the Painleve I equation.
We show that one-loop amplitudes in massless gauge theories can be determined from single cuts. By cutting a single propagator and putting it on-shell, the integrand of an n-point one-loop integral is transformed into an (n+2)-particle tree level amplitude. The single-cut approach described here is complementary to the double or multiple unitarity cut approaches commonly used in the literature. In common with these approaches, if the cut is taken in four dimensions, one finds only the cut-constructible parts of the amplitude, while if the cut is in D=4-2 epsilon dimensions, both rational and cut-constructible parts are obtained. We test our method by reproducing the known results for the fully rational all-plus and mostly-plus QCD amplitudes A^{(1)}_4(1^+,2^+,3^+,4^+) and A^{(1)}_5(1^+,2^+,3^+,4^+,5^+). We also rederive expressions for the scalar loop contribution to the four-gluon MHV amplitude, A_4^{(1,N=0)}(-,-,+,+) which has both cut-constructible and rational contributions, and the fully cut-constructible n-gluon MHV amplitude in N=4 Supersymetric Yang-Mills, A_4^{(1,N=4)}(-,-,+,...,+).
We provide explicit bounds on the difference of heights of isogenous Drinfeld modules. We derive a finiteness result in isogeny classes. In the rank 2 case, we also obtain an explicit upper bound on the size of the coefficients of modular polynomials attached to Drinfeld modules.
We address counting and optimization variants of multicriteria global min-cut and size-constrained min-$k$-cut in hypergraphs. 1. For an $r$-rank $n$-vertex hypergraph endowed with $t$ hyperedge-cost functions, we show that the number of multiobjective min-cuts is $O(r2^{tr}n^{3t-1})$. In particular, this shows that the number of parametric min-cuts in constant rank hypergraphs for a constant number of criteria is strongly polynomial, thus resolving an open question by Aissi, Mahjoub, McCormick, and Queyranne (Math Programming, 2015). In addition, we give randomized algorithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly polynomial-time. 2. We also address node-budgeted multiobjective min-cuts: For an $n$-vertex hypergraph endowed with $t$ vertex-weight functions, we show that the number of node-budgeted multiobjective min-cuts is $O(r2^{r}n^{t+2})$, where $r$ is the rank of the hypergraph, and the number of node-budgeted $b$-multiobjective min-cuts for a fixed budget-vector $b$ is $O(n^2)$. 3. We show that min-$k$-cut in hypergraphs subject to constant lower bounds on part sizes is solvable in polynomial-time for constant $k$, thus resolving an open problem posed by Queyranne. Our technique also shows that the number of optimal solutions is polynomial. All of our results build on the random contraction approach of Karger (SODA, 1993). Our techniques illustrate the versatility of the random contraction approach to address counting and algorithmic problems concerning multiobjective min-cuts and size-constrained $k$-cuts in hypergraphs.
We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا