Wave-function engineering via conditional quantum teleportation with non-Gaussian entanglement resource


Abstract in English

We propose and analyze a setup to tailor the wave functions of the quantum states. Our setup is based on the quantum teleportation circuit, but instead of the usual two-mode squeezed state, two-mode non-Gaussian entangled state is used. Using this setup, we can generate various classes of quantum states such as Schrodinger cat states, four-component cat states, superpositions of Fock states, and cubic phase states. These results demonstrate the versatility of our system as a state generator and suggest that conditioning using homodyne measurements is an important tool in the generations of the non-Gaussian states in complementary to the photon number detection.

Download