Do you want to publish a course? Click here

Convergence of Combinatorial Gravity

77   0   0.0 ( 0 )
 Added by Christy Kelly
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new regularisation of Euclidean Einstein gravity in terms of (sequences of) graphs. In particular, we define a discrete Einstein-Hilbert action that converges to its manifold counterpart on sufficiently dense random geometric graphs (more generally on any sequence of graphs that converges to the manifold in the sense of Gromov-Hausdorff). Our construction relies crucially on the Ollivier curvature of optimal transport theory. Our methods also allow us to define an analogous discrete action for Klein-Gordon fields. These results may be taken as the basis for a combinatorial approach to quantum gravity where we seek to generate graphs that approximate manifolds as metric-measure structures.



rate research

Read More

230 - D. Grumiller , R. Jackiw 2007
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newtons constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - passes several consistency tests: geometric properties, interactions with matter and the Bekenstein-Hawking entropy are as expected from Einstein gravity.
272 - G. Sparano , G. Vilasi , S. Vilasi 2010
A solution of the old problem raised by Tolman, Ehrenfest, Podolsky and Wheeler, concerning the lack of attraction of two light pencils moving parallel, is proposed, considering that the light can be source of nonlinear gravitational waves corresponding (in the would be quantum theory of gravity) to spin-1 massless particles.
91 - Damianos Iosifidis 2019
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry. In the second Chapter we explore the MAG model building. In Chapter 3 we use a well known procedure to excite torsional degrees of freedom by coupling surface terms to scalars. Then, in Chapter 4 which seems to be the most important Chapter of the thesis, at least with regards to its use in applications, we present a step by step way to solve for the affine connection in non-Riemannian geometries, for the first time in the literature. A peculiar f(R) case is studied in Chapter 5. This is the conformally (as well as projective invariant) invariant theory f(R)=a R^{2} which contains an undetermined scalar degree of freedom. We then turn our attention to Cosmology with torsion and non-metricity (Chapter 6). In Chapter 7, we formulate the necessary setup for the $1+3$ splitting of the generalized spacetime. Having clarified the subtle points (that generally stem from non-metricity) in the aforementioned formulation we carefully derive the generalized Raychaudhuri equation in the presence of both torsion and non-metricity (along with curvature). This, as it stands, is the most general form of the Raychaudhuri equation that exists in the literature. We close this Thesis by considering three possible scale transformations that one can consider in Metric-Affine Geometry.
We use factorisations of the local isometry groups arising in 3d gravity for Lorentzian and Euclidean signatures and any value of the cosmological constant to construct associated bicrossproduct quantum groups via semidualisation. In this way we obtain quantum doubles of the Lorentz and rotation groups in 3d, as well as kappa-Poincare algebras whose associated r-matrices have spacelike, timelike and lightlike deformation parameters. We confirm and elaborate the interpretation of semiduality proposed in [13] as the exchange of the cosmological length scale and the Planck mass in the context of 3d quantum gravity. In particular, semiduality gives a simple understanding of why the quantum double of the Lorentz group and the kappa-Poincare algebra with spacelike deformation parameter are both associated to 3d gravity with vanishing cosmological constant, while the kappa-Poincare algebra with a timelike deformation parameter can only be associated to 3d gravity if one takes the Planck mass to be imaginary.
127 - Damianos Iosifidis 2018
This article presents a systematic way to solve for the Affine Connection in Metric-Affine Geometry. We start by adding to the Einstein-Hilbert action, a general action that is linear in the connection and its partial derivatives and respects projective invariance. We then generalize the result for Metric-Affine f(R) Theories. Finally, we generalize even further and add an action (to the Einstein-Hilbert) that has an arbitrary dependence on the connection and its partial derivatives. We wrap up our results as three consecutive Theorems. We then apply our Theorems to some simple examples in order to illustrate how the procedure works and also discuss the cases of dynamical/non-dynamical connections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا