Do you want to publish a course? Click here

Fast control of atom-light interaction in a narrow linewidth cavity

105   0   0.0 ( 0 )
 Added by Andrea Bertoldi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a method to exploit high finesse optical resonators for light assisted coherent manipulation of atomic ensembles, overcoming the limit imposed by the finite response time of the cavity. The key element of our scheme is to rapidly switch the interaction between the atoms and the cavity field with an auxiliary control process as, for example, the light shift induced by an optical beam. The scheme is applicable to many different atomic species, both in trapped and free fall configurations, and can be adopted to control the internal and/or external atomic degrees of freedom. Our method will open new possibilities in cavity-aided atom interferometry and in the preparation of highly non-classical atomic states.



rate research

Read More

65 - Jun Sun , Yong-Nan Sun 2018
In light-pulsed atom interferometry, the phase accumulated by atoms depends on the effective wave vector of the absorbed photons. In this work, we proposed a theory model to analyses the effective wave vector of photons in structured light. As for monochromatic optical field, a transverse confinement could lead to diffraction. We put forward that in light-atom interaction, the atom wave function could also provide a transverse confinement thus affect the effective wave vector of the absorbed photons. We calculated the relative shift of the photon effective wave vector when an atom with a Gaussian wave function absorbs one photon at the waist in a Gaussian beam. This shift could lead to a systematic effect related to atom spatial distribution in high precision experiment based on light-pulsed atom interferometry.
As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub 100 mHz level and superradiant laser sources involving narrow line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation with ultranarrow clock transitions.
277 - Peng Xu , Jiaheng Yang , Min Liu 2015
Two-atom systems in small traps are of fundamental interest, first of all for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of $^{87}$Rb and $^{85}$Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. The developed experimental method allows us to single out a particular relaxation process and, in this sense, our experiment is a superclean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates.
We present an experimental study of cavity assisted Rydberg atom electromagnetically induced transparency (EIT) using a high-finesse optical cavity ($F sim 28000$). Rydberg atoms are excited via a two-photon transition in a ladder-type EIT configuration. A three-peak structure of the cavity transmission spectrum is observed when Rydberg EIT is generated inside the cavity. The two symmetrically spaced side peaks are caused by bright-state polaritons, while the central peak corresponds to a dark-state polariton. Anti-crossing phenomenon and the effects of mirror adsorbate electric fields are studied under different experimental conditions. We determine a lower bound on the coherence time for the system of $7.26 pm 0.06 ,mu$s, most likely limited by laser dephasing. The cavity-Rydberg EIT system can be useful for single photon generation using the Rydberg blockade effect, studying many-body physics, and generating novel quantum states amongst many other applications.
Coupling of light to an atom at single quanta level with high probability is a building block for many quantum information processing protocols. It is commonly believed that efficient coupling is only achievable with the assistance of a cavity. Here, we report on an observation of substantial coupling between a light beam and a single $^{87}$Rb atom in a direct extinction measurement by focusing light to a small spot with a single lens. Our result opens a new perspective on processing quantum information carried by light using atoms, and is important to many ongoing experiments that require strong coupling of single photons to an atom in free space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا