Do you want to publish a course? Click here

Magnetically Modified Spherical Accretion in GRMHD: Reconnection-Driven Convection and Jet Propagation

302   0   0.0 ( 0 )
 Added by Sean Ressler
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 3D general relativistic magnetohydrodynamic(GRMHD) simulations of zero angular momentum accretion around a rapidly rotating black hole, modified by the presence of initially uniform magnetic fields. We consider serveral angles between the magnetic field direction and the black hole spin. In the resulting flows, the midplane dynamics are governed by magnetic reconnection-driven turbulence in a magnetically arrested (or a nearly arrested) state. Electromagnetic jets with outflow efficiencies ~10-200% occupy the polar regions, reaching several hundred gravitational radii before they dissipate due to the kink instability. The jet directions fluctuate in time and can be tilted by as much as ~30 degrees with respect to black hole spin, but this tilt does not depend strongly on the tilt of the initial magnetic field. A jet forms even when there is no initial net vertical magnetic flux since turbulent, horizon-scale fluctuations can generate a net vertical field locally. Peak jet power is obtained for an initial magnetic field tilted by 40-80 degrees with respect to the black hole spin because this maximizes the amount of magnetic flux that can reach the black hole. These simulations may be a reasonable model for low luminosity black hole accretion flows such as Sgr A* or M87.



rate research

Read More

We carried out 2.5-dimensional resistive magnetohydrodynamic simulations to study the effects of magnetic diffusivity on magnetically driven mass accretion and jet formation. We found that (1) when the normalized magnetic diffusivity, is small, mass accretion and jet formation take place intermittently; (2) when diffusivity is middle, the system evolves toward a quasi-steady state; and the system evolves toward a quasi-steady state; and (3) when diffusivity is large, the accretion/mass outflow rate decreases with diffusivity and approaches 0. The results of these simulations indicate magnetic braking provide a mass accretion rate which is sufficient to explain the activity of AGNs.
We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, pg. We find, through identifying the detected features with Fe K$alpha$ transitions, that the absorber has a characteristic ionization parameter of $log (xi_c [erg~cm~s$^{-1}$]) simeq 5-6$ and a column density on the order of $N_H simeq 10^{23}$ cm$^{-2}$, outflowing at a characteristic velocity of $v_c/c simeq 0.1-0.2$ (where $c$ is the speed of light). The best-fit model favors its radial location at $r_c simeq 200 R_o$ ($R_o$ is the black hole innermost stable circular orbit), with an inner wind truncation radius at $R_{rm t} simeq 30 R_o$. The overall K-shell feature in the data is suggested to be dominated by fexxv with very little contribution from fexxvi and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including pg.
189 - Yan-Fei Jiang , Omer Blaes 2020
We study the structure of accretion disks around supermassive black holes in the radial range $30sim 100$ gravitational radii, using a three dimensional radiation magneto-hydrodynamic simulation. For typical conditions in this region of Active Galactic Nuclei (AGN), the Rosseland mean opacity is expected to be larger than the electron scattering value. We show that the iron opacity bump causes the disk to be convective unstable. Turbulence generated by convection puffs up the disk due to additional turbulent pressure support and enhances the local angular momentum transport. This also results in strong fluctuations in surface density and heating of the disk. The opacity drops with increasing temperature and convection is suppressed. The disk cools down and the whole process repeats again. This causes strong oscillations of the disk scale height and luminosity variations by more than a factor of $approx 3-6$ over a few years timescale. Since the iron opacity bump will move to different locations of the disk for black holes with different masses and accretion rates, we suggest that this is a physical mechanism that can explain the variability of AGN with a wide range of amplitudes over a time scale of years to decades.
It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs).
We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density $n(r,theta)$, ionization parameter $xi(r,theta)$, and velocity structure $v(r,theta)$ of such ionized winds for typical values of their fluid-to-magnetic flux ratio, $F$, and specific angular momentum, $H$, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller $H$ show a poloidal geometry of narrower opening angles with their Alfven surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, $r$, and distinct values of $n$, $xi$ and $v$ consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk-winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا