No Arabic abstract
In this article we study and classify optimal martingales in the dual formulation of optimal stopping problems. In this respect we distinguish between weakly optimal and surely optimal martingales. It is shown that the family of weakly optimal and surely optimal martingales may be quite large. On the other hand it is shown that the Doob-martingale, that is, the martingale part of the Snell envelope, is in a certain sense the most robust surely optimal martingale under random perturbations. This new insight leads to a novel randomized dual martingale minimization algorithm that doesnt require nested simulation. As a main feature, in a possibly large family of optimal martingales the algorithm efficiently selects a martingale that is as close as possible to the Doob martingale. As a result, one obtains the dual upper bound for the optimal stopping problem with low variance.
We propose a new unbiased estimator for estimating the utility of the optimal stopping problem. The MUSE, short for `Multilevel Unbiased Stopping Estimator, constructs the unbiased Multilevel Monte Carlo (MLMC) estimator at every stage of the optimal stopping problem in a backward recursive way. In contrast to traditional sequential methods, the MUSE can be implemented in parallel when multiple processors are available. We prove the MUSE has finite variance, finite computational complexity, and achieves $varepsilon$-accuracy with $O(1/varepsilon^2)$ computational cost under mild conditions. We demonstrate MUSE empirically in several numerical examples, including an option pricing problem with high-dimensional inputs, which illustrates the use of the MUSE on computer clusters.
This paper presents new machine learning approaches to approximate the solution of optimal stopping problems. The key idea of these methods is to use neural networks, where the hidden layers are generated randomly and only the last layer is trained, in order to approximate the continuation value. Our approaches are applicable for high dimensional problems where the existing approaches become increasingly impractical. In addition, since our approaches can be optimized using a simple linear regression, they are very easy to implement and theoretical guarantees can be provided. In Markovian examples our randomized reinforcement learning approach and in non-Markovian examples our randomized recurrent neural network approach outperform the state-of-the-art and other relevant machine learning approaches.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finite horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.
We develop a theory of optimal stopping problems under G-expectation framework. We first define a new kind of random times, called G-stopping times, which is suitable for this problem. For the discrete time case with finite horizon, the value function is defined backwardly and we show that it is the smallest G-supermartingale dominating the payoff process and the optimal stopping time exists. Then we extend this result both to the infinite horizon and to the continuous time case. We also establish the relation between the value function and solution of reflected BSDE driven by G-Brownian motion.
In this paper we study randomized optimal stopping problems and consider corresponding forward and backward Monte Carlo based optimisation algorithms. In particular we prove the convergence of the proposed algorithms and derive the corresponding convergence rates.