Do you want to publish a course? Click here

Search for axion-like dark matter with spin-based amplifiers

66   0   0.0 ( 0 )
 Added by Min Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultralight axion-like particles (ALPs) are well-motivated dark matter candidates introduced by theories beyond the standard model. However, the constraints on the existence of ALPs through existing laboratory experiments are hindered by their current sensitivities, which are usually weaker than astrophysical limits. Here, we demonstrate a new quantum sensor to search for ALPs in the mass range that spans about two decades from 8.3 feV to 744 feV. Our sensor makes use of hyperpolarized long-lived nuclear spins as a pre-amplifier that effectively enhances coherently oscillating axion-like dark-matter field by a factor of >100. Using spin-based amplifiers, we achieve an ultrahigh magnetic sensitivity of 18 fT/Hz$^{1/2}$, which is significantly better than state-of-the-art nuclear-spin magnetometers. Our experiment constrains the parameter space describing the coupling of ALPs to nucleons over our mass range, at 67.5 feV reaching $2.9times 10^{-9}~textrm{GeV}^{-1}$ ($95%$ confidence level), improving over previous laboratory limits by at least five orders of magnitude. Our measurements also constrain the ALP-nucleon quadratic interaction and dark photon-nucleon interaction with new limits beyond the astrophysical ones



rate research

Read More

Existence of dark matter indicates the presence of unknown fundamental laws of nature. Ultralight axion-like particles are well-motivated dark matter candidates, emerging naturally from theories of physics at ultrahigh energies. We report the results of a direct search for the electromagnetic interaction of axion-like dark matter in the mass range that spans three decades from 12 peV to 12 neV. The detection scheme is based on a modification of Maxwells equations in the presence of axion-like dark matter, which mixes with a static magnetic field to produce an oscillating magnetic field. The experiment makes use of toroidal magnets with iron-nickel alloy ferromagnetic powder cores, which enhance the static magnetic field by a factor of 24. Using SQUIDs, we achieve a magnetic sensitivity of 150 $text{aT}/sqrt{text{Hz}}$, at the level of the most sensitive magnetic field measurements demonstrated with any broadband sensor. We recorded 41 hours of data and improved the best limits on the magnitude of the axion-like dark matter electromagnetic coupling constant over part of our mass range, at 20 peV reaching $4.0 times 10^{-11} text{GeV}^{-1}$ (95% confidence level). Our measurements are starting to explore the coupling strengths and masses of axion-like particles where mixing with photons could explain the anomalous transparency of the universe to TeV gamma-rays.
96 - C. Abel , N.J. Ayres , G. Ban 2017
We report on a search for ultra-low-mass axion-like dark matter by analysing the ratio of the spin-precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range $10^{-24}~textrm{eV} le m_a le 10^{-17}~textrm{eV}$. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.
86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matter because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا