Do you want to publish a course? Click here

Matrix weighted Kolmogorov-Rieszs compactness theorem

149   0   0.0 ( 0 )
 Added by Ciqiang Zhuo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, sever



rate research

Read More

The purpose of this short note is to provide a new and very short proof of a result by Sudakov, offering an important improvement of the classical result by Kolmogorov-Riesz on compact subsets of Lebesgue spaces.
The classical Szeg{o}--Kolmogorov Prediction Theorem gives necessary and sufficient condition on a weight $w$ on the unite cirlce $T$ so that the exponentials with positive integer frequences span the weighted space $L^2(T,w)$. We consider the problem how many of these exponentials can be removed while still keeping the completeness property.
116 - Paul W.Y. Lee 2014
We give proofs of QR factorization, Choleskys factorization, and LDU factorization using the inverse function theorem. As a consequence, we obtain analytic dependence of these matrix factorizations which does not follow immediately using Gaussian elimination.
A new characterization of CMO(R^n) is established by the local mean oscillation. Some characterizations of iterated compact commutators on weighted Lebesgue spaces are given, which are new even in the unweighted setting for the first order commutators.
In this paper, we first establish the weighted compactness result for oscillation and variation associated with the truncated commutator of singular integral operators. Moreover, we establish a new $CMO(mathbb{R}^n)$ characterization via the compactness of oscillation and variation of commutators on weighted Lebesgue spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا